926 resultados para Finite Elemente Methode (FEM)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of the finite-amplitude folding of an isolated, linearly viscous layer under compression and imbedded in a medium of lower viscosity is treated theoretically by using a variational method to derive finite difference equations which are solved on a digital computer. The problem depends on a single physical parameter, the ratio of the fold wavelength, L, to the "dominant wavelength" of the infinitesimal-amplitude treatment, L_d. Therefore, the natural range of physical parameters is covered by the computation of three folds, with L/L_d = 0, 1, and 4.6, up to a maximum dip of 90°.

Significant differences in fold shape are found among the three folds; folds with higher L/L_d have sharper crests. Folds with L/L_d = 0 and L/L_d = 1 become fan folds at high amplitude. A description of the shape in terms of a harmonic analysis of inclination as a function of arc length shows this systematic variation with L/L_d and is relatively insensitive to the initial shape of the layer. This method of shape description is proposed as a convenient way of measuring the shape of natural folds.

The infinitesimal-amplitude treatment does not predict fold-shape development satisfactorily beyond a limb-dip of 5°. A proposed extension of the treatment continues the wavelength-selection mechanism of the infinitesimal treatment up to a limb-dip of 15°; after this stage the wavelength-selection mechanism no longer operates and fold shape is mainly determined by L/L_d and limb-dip.

Strain-rates and finite strains in the medium are calculated f or all stages of the L/L_d = 1 and L/L_d = 4.6 folds. At limb-dips greater than 45° the planes of maximum flattening and maximum flattening rat e show the characteristic orientation and fanning of axial-plane cleavage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the correction terms in Heegaard Floer homology, we prove that if a knot in S3 admits a positive integral T-, O-, or I-type surgery, it must have the same knot Floer homology as one of the knots given in our complete list, and the resulting manifold is orientation-preservingly homeomorphic to the p-surgery on the corresponding knot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytic technique is developed that couples to finite difference calculations to extend the results to arbitrary distance. Finite differences and the analytic result, a boundary integral called two-dimensional Kirchhoff, are applied to simple models and three seismological problems dealing with data. The simple models include a thorough investigation of the seismologic effects of a deep continental basin. The first problem is explosions at Yucca Flat, in the Nevada test site. By modeling both near-field strong-motion records and teleseismic P-waves simultaneously, it is shown that scattered surface waves are responsible for teleseismic complexity. The second problem deals with explosions at Amchitka Island, Alaska. The near-field seismograms are investigated using a variety of complex structures and sources. The third problem involves regional seismograms of Imperial Valley, California earthquakes recorded at Pasadena, California. The data are shown to contain evidence of deterministic structure, but lack of more direct measurements of the structure and possible three-dimensional effects make two-dimensional modeling of these data difficult.