968 resultados para Fine arts.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To gain a better insight into alpha-decay fine structure, we calculate the relative intensities of alpha decay to 2(+) and 4(+) rotational states in the framework of the generalized liquid drop model (GLDM) and improved Royer's formula. The calculated relative intensities of a decay to 2(+) states are in good agreement with the experimental data. For the relative intensities of alpha decay to 4(+) states, a good agreement with experimental data is achieved for Th and U isotopes. The formula we obtain is useful for the analysis of experimental data of alpha-decay fine structure. In addition, some predicted relative intensities which are still not measured are provided for future experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new series of fine-tunable phosphite-pyridine (P,N) ligands derived from (S)-2-amino-T-hydroxy-6,6'-dimethyl-1,1'-biphenyl and (S)-2-amino-2'-hydroxy-4,4',6,6'-tetramethyl-1,1'-biphenyl was employed in Cu(I)-catalyzed conjugate addition of diethylzinc to acyclic enones. Excellent enantioselectivities (up to 98% ee) and highly catalytic activities were achieved for a variety of acyclic enones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through layer-by-layer (LBL) assembly technique, iron oxide (Fe3O4) nanoparticles coated by poly (diallyldimethylammonium chloride) (PDDA) and Preyssler-type polyoxometalates (NH4)(14)NaP5W30O110.31H(2)O (P5W30) were alternately deposited on quartz and ITO substrates, and 4-aminobenzoic acid modified glassy carbon electrodes. Thus-prepared multilayer films were characterized by UV-visible spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. It was proved that the multilayer films are uniform and stable. And the electrocatalytic activities of the multilayer films can be fine-tuned by adjusting the assembly conditions in the LBL assembly process, such as the pH of the assembly solution. The multilayer films fabricated from P5W30 solutions dissolved in 0.1 M H2SO4 exhibit high electrocatalytic response and sensitivity toward the reduction of two substrates of important analytical interests, HNO2 and IO3- whereas the films assembled with P5W30 solutions dissolved in 1.0 M H2SO4 show remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). Furthermore, the electrocatalytic properties of the HER of the latter film can be obtained from the former film upon exposure to 1.0 M H2SO4 for several hours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a novel approach for preparing SERS and SPR substrates was developed, which indicates a potential application in tailoring the interfacial structure of an electrode surface. In this study, (3-mercaptopropyl)trimethoxysilane (MPTMS) was selected as a polymeric adhesive layer, and a low concentration of colloid Au solution was used to achieve a more accurate control over interface morphology at nanoscale dimensions due to slow self-assembling kinetics of gold nanoparticle's. Subsequent seeding growth of these MPTMS-supported submonolayers of gold nanoparticles in Au3+/NH2OH aqueous solution enlarges particle size and eventually results in the generation of conductive gold films (similar to previous (3-aminopropyl)trimethoxysilane-supported gold films). Such tunable interface structure was evaluated by atomic force microscopy (AFM). Also, ac impedance spectroscopy (ACIS) and cyclic voltammograms were performed to evaluate electrochemical properties of the as-prepared interfaces by using Fe(CN)(6) (3-/4-) couples as a probe. Furthermore, relevant theories of microarray electrodes were introduced into this study to explain the highly tunable electrochemical properties of the as-prepared interfaces. As a result, it is concluded that the electrochemical properties toward Fe(CN)(6) (3-/4-) couples are highly dependent on the active nanoelectrode (nanoparticles) area fraction and nanoparticles are fine-tuners of interfacial properties because the number density. (numbers/unit area) and size of nanoparticles are highly tunable by self-assembling and seeding growth time scale control. This is in agreement with the theoretical expectations for a microarray electrode if a single nanoparticle tethered to a blocking SAM is taken as a nanoelectrode and 2-D nanoparticle assemblies are taken as nanoelectrode arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the deep-sea sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their community characteristics is still lacking, considering the vast area and volume of the deep-sea sedimentary environments. Sediment bacteria vertical distribution and community structure were studied of the E272 site in the East Pacific Ocean with the molecular methods of 16S rRNA gene T-RFLP (terminal restriction fragment length polymorphism) and clone library analyses. Layered distribution of the bacterial assemblages was detected by both methods, indicating that the shallow sediments (40 cm in depth) harbored a diverse and distinct bacterial composition with fine-scale spatial heterogeneity. Substantial bacterial diversity was detected and nine major bacterial lineages were obtained, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospirae, Planctomycetes, Proteobacteria, and the candidate divisions OP8 and TM6. Three subdivisions of the Proteobacteria presented in our libraries, including the alpha-, gamma- and delta-Proteobacteria. Most of our sequences have low similarity with known bacterial 16S rRNA genes, indicating that these sequences may represent as-yet-uncultivated novel bacteria. Most of our sequences were related to the GenBank nearest neighboring sequences retrieved from marine sediments, especially from deep-sea methane seep, gas hydrate or mud volcano environments. Several sequences were related to the sequences recovered from the deep-sea hydrothermal vent or basalt glasses-bearing sediments, indicating that our deep-sea sampling site might be influenced to certain degree by the nearby hydrothermal field of the East Pacific Rise at 13A degrees N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas hydrate samples were obtained firstly in China by drilling on the northern margin of South China Sea (SCS). To understand the formation mechanism of this unique accumulation system, this paper discusses the factors controlling the formation of the system by accurate geophysical interpretation and geological analysis, based on the high precision 2-D and 3-D multichannel seismic data in the drilling area. There are three key factors controlling the accumulation of the gas hydrate system in fine grain sediment: (1) large volume of fluid bearing methane gas Joins the formation of gas hydrate. Active fluid flow in the northern South China Sea makes both thermal gas and/or biogenic gas migrate into shallow strata and form hydrate in the gas hydrate stability zone (GHSZ). The fluid flow includes mud diapir and gas chimney structure. They are commonly characterized by positive topographic relief, acoustic turbidity and push-down, and low reflection intensity on seismic profiles. The gas chimneys can reach to GHSZ, which favors the development of BSRs. It means that the active fluid flow has a close relationship with the formation and accumulation of gas hydrate. (2) The episodic process of fracture plays an important role in the generation of gas hydrate. It may provide the passage along which thermogenic or biogenic gas migrated into gas hydrate stability zone (GHSZ) upward. And it increases the pore space for the growth of hydrate crystal. (3) Submarine landslide induced the anomalous overpressure activity and development of fracture in the GHSZ. The formation model of high concentration gas hydrate in the drilling sea area was proposed on the basis of above analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, as oil exploitation has become focused on deepwater slope areas. more multi-channel high resolution 2D and 3D seismic data were acquired in the deepwater part of the Qiongdongnan Basin, northern South China Sea. Based on 3D seismic data and coherence time slice, RMS and 3D visualization, a series of deepwater channels were recognized on the slope that probably developed in the late Quaternary period. These channels trend SW-NE to W-E and show bifurcations, levees, meander loops and avulsions. High Amplitude Reflections (HARs), typical for channel-levee complexes, are of only minor importance and were observed in one of the channel systems. Most of the detected channels are characterized by low-amplitude reflections, and so are different from the typical coarse-grained turbidite channels that had been discovered worldwide. The absence of well data in the study area made it difficult to determine the age and lithology of these channels. Using a neighboring drill hole and published data about such depositional systems worldwide, the lithology of these channels is likely to be dominated by mudstones with interbedded thin sandstones. These channels are formed by turbidity currents originated from the little scale mountain river of mid-Vietnam in SW direction and were probably accompanied by a relative sea level drop in the last glacial age. These channels discovered on the northern South China Sea slope are likely to be fine-grained, mud-dominant and low N:G deposits in a deepwater paleogeographic setting. (C) 2009 Elsevier Ltd. All rights reserved.