973 resultados para Field Admitting (one-dimensional) Local Class Field Theory
Resumo:
In this work the fundamental ideas to study properties of QFTs with the functional Renormalization Group are presented and some examples illustrated. First the Wetterich equation for the effective average action and its flow in the local potential approximation (LPA) for a single scalar field is derived. This case is considered to illustrate some techniques used to solve the RG fixed point equation and study the properties of the critical theories in D dimensions. In particular the shooting methods for the ODE equation for the fixed point potential as well as the approach which studies a polynomial truncation with a finite number of couplings, which is convenient to study the critical exponents. We then study novel cases related to multi field scalar theories, deriving the flow equations for the LPA truncation, both without assuming any global symmetry and also specialising to cases with a given symmetry, using truncations based on polynomials of the symmetry invariants. This is used to study possible non perturbative solutions of critical theories which are extensions of known perturbative results, obtained in the epsilon expansion below the upper critical dimension.
Resumo:
We investigate the potential of a high-energy muon collider in measuring the muon Yukawa coupling (y_μ) in the production of two, three and four heavy bosons via muon-antimuon annihilations. We study the sensitivity of these processes to deviations of y_μ from the Standard Model prediction, parametrized by an effective dimension-6 operator in the Standard Model Effective Field Theory (SMEFT) framework. We also consider the κ framework, in which the deviation is simply parametrized by a strength modification of the μ+μ−h vertex alone. Both frameworks lead to an energy enhancement of the cross sections with one or more vector bosons, although the κ framework yields stronger effects, especially for the production of four bosons. On the contrary, for purely-Higgs final states the cross section is suppressed in the κ framework, while it is extremely sensitive to deviations in the SMEFT. We show that the triple-Higgs production is the most sensitive process to spot new physics effects on y_μ.
Resumo:
Quantum clock models are statistical mechanical spin models which may be regarded as a sort of bridge between the one-dimensional quantum Ising model and the one-dimensional quantum XY model. This thesis aims to provide an exhaustive review of these models using both analytical and numerical techniques. We present some important duality transformations which allow us to recast clock models into different forms, involving for example parafermions and lattice gauge theories. Thus, the notion of topological order enters into the game opening new scenarios for possible applications, like topological quantum computing. The second part of this thesis is devoted to the numerical analysis of clock models. We explore their phase diagram under different setups, with and without chirality, starting with a transverse field and then adding a longitudinal field as well. The most important observables we take into account for diagnosing criticality are the energy gap, the magnetisation, the entanglement entropy and the correlation functions.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The immunogenic properties of cysteine proteases obtained from excretory/secretory products (ES) of Haemonchus contortus were investigated with a fraction purified with a recombinant H. contortus cystatin affinity column. The enrichment of H. contortus ES for cysteine protease was confirmed with substrate SDS-PAGE gels since the cystatin-binding fraction activity was three times higher than total ES, despite representing only 3% of total ES. This activity was inhibited by a specific cysteine protease inhibitor (E64) and by recombinant cystatin. The one-dimensional profile of the cystatin-binding fraction displayed a single band with a molecular mass of 43 kDa. Mass spectrometry showed this to be AC-5, a cathepsin B-like cysteine protease which had not been identified in ES products of H. contortus before. The cystatin binding fraction was tested as an immunogen in lambs which were vaccinated three times (week 0, 2.5 and 5), challenged with 10 000 L3 H. contortus (week 6) before necropsy and compared to unvaccinated challenge controls and another group given total ES (n = 10 per group). The group vaccinated with cystatin-binding proteins showed 36% and 32% mean worm burden and eggs per gram of faeces (EPG) reductions, respectively, compared to the controls but total ES was almost without effect. After challenge the cystatin-binding proteins induced significantly higher local and systemic ES specific IgA and IgG responses.
Resumo:
Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional (2D) defocusing nonlinear Schroumldinger (NLS) equation. This problem is of fundamental importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear ""ship-wave"" pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles.
Resumo:
A search for a sidereal modulation in the MINOS near detector neutrino data was performed. If present, this signature could be a consequence of Lorentz and CPT violation as predicted by the effective field theory called the standard-model extension. No evidence for a sidereal signal in the data set was found, implying that there is no significant change in neutrino propagation that depends on the direction of the neutrino beam in a sun-centered inertial frame. Upper limits on the magnitudes of the Lorentz and CPT violating terms in the standard-model extension lie between 10(-4) and 10(-2) of the maximum expected, assuming a suppression of these signatures by a factor of 10(-17).
Resumo:
Using the Berezin-Marinov pseudoclassical formulation of the spin particle we propose a classical model of spin noncommutativity. In the nonrelativistic case, the Poisson brackets between the coordinates are proportional to the spin angular momentum. The quantization of the model leads to the noncommutativity with mixed spatial and spin degrees of freedom. A modified Pauli equation, describing a spin half particle in an external electromagnetic field is obtained. We show that nonlocality caused by the spin noncommutativity depends on the spin of the particle; for spin zero, nonlocality does not appear, for spin half, Delta x Delta y >= theta(2)/2, etc. In the relativistic case the noncommutative Dirac equation was derived. For that we introduce a new star product. The advantage of our model is that in spite of the presence of noncommutativity and nonlocality, it is Lorentz invariant. Also, in the quasiclassical approximation it gives noncommutativity with a nilpotent parameter.
Resumo:
We study the noncommutative massless Kalb-Ramond gauge field coupled to a dynamical U(1) gauge field in the adjoint representation together with a compensating vector field. We derive the Seiberg-Witten map and obtain the corresponding mapped action to first order in theta. The (emergent) gravity structure found in other situations is not present here. The off-shell dual scalar theory is derived and it does not coincide with the Seiberg-Witten mapped scalar theory. Dispersion relations are also discussed. The p-form generalization of the Seiberg-Witten map to order theta is also derived.
Resumo:
The formation of one-dimensional carbon chains from graphene nanoribbons is investigated using ab initio molecular dynamics. We show under what conditions it is possible to obtain a linear atomic chain via pulling of the graphene nanoribbons. The presence of dimers composed of two-coordinated carbon atoms at the edge of the ribbons is necessary for the formation of the linear chains, otherwise there is simply the full rupture of the structure. The presence of Stone-Wales defects close to these dimers may lead to the formation of longer chains. The local atomic configuration of the suspended atoms indicates the formation of single and triple bonds, which is a characteristic of polyynes.
Resumo:
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a theta modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the theta-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the theta-modified Pauli equation. We extract theta-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a theta modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal Einstein-Podolsky-Rosen states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the commutative space, are possible due to the space noncommutativity. This allows us to estimate an upper bound on the noncommutativity parameter.
Resumo:
In a U(1)(*)-noncommutative gauge field theory we extend the Seiberg-Witten map to include the (gauge-invariance-violating) external current and formulate-to the first order in the noncommutative parameter-gauge-covariant classical field equations. We find solutions to these equations in the vacuum and in an external magnetic field, when the 4-current is a static electric charge of a finite size a, restricted from below by the elementary length. We impose extra boundary conditions, which we use to rule out all singularities, 1/r included, from the solutions. The static charge proves to be a magnetic dipole, with its magnetic moment being inversely proportional to its size a. The external magnetic field modifies the long-range Coulomb field and some electromagnetic form factors. We also analyze the ambiguity in the Seiberg-Witten map and show that at least to the order studied here it is equivalent to the ambiguity of adding a homogeneous solution to the current-conservation equation.
Resumo:
Stavskaya's model is a one-dimensional probabilistic cellular automaton (PCA) introduced in the end of the 1960s as an example of a model displaying a nonequilibrium phase transition. Although its absorbing state phase transition is well understood nowadays, the model never received a full numerical treatment to investigate its critical behavior. In this Brief Report we characterize the critical behavior of Stavskaya's PCA by means of Monte Carlo simulations and finite-size scaling analysis. The critical exponents of the model are calculated and indicate that its phase transition belongs to the directed percolation universality class of critical behavior, as would be expected on the basis of the directed percolation conjecture. We also explicitly establish the relationship of the model with the Domany-Kinzel PCA on its directed site percolation line, a connection that seems to have gone unnoticed in the literature so far.
Resumo:
has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, subdominant contributions. This view seemed to be endorsed by the seminal results obtained over the last decades in the context of renormalization of quantum fields in curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background spacetime, to become dominant over any classical energy-density component. By estimating the time scale for the vacuum energy density to become dominant, and therefore for back-reaction on the background spacetime to become important, we argue that this (infrared) vacuum dominance may bear unexpected astrophysical and cosmological implications.
Resumo:
We consider the one-dimensional asymmetric simple exclusion process (ASEP) in which particles jump to the right at rate p is an element of (1/2, 1.] and to the left at rate 1 - p, interacting by exclusion. In the initial state there is a finite region such that to the left of this region all sites are occupied and to the right of it all sites are empty. Under this initial state, the hydrodynamical limit of the process converges to the rarefaction fan of the associated Burgers equation. In particular suppose that the initial state has first-class particles to the left of the origin, second-class particles at sites 0 and I, and holes to the right of site I. We show that the probability that the two second-class particles eventually collide is (1 + p)/(3p), where a collision occurs when one of the particles attempts to jump over the other. This also corresponds to the probability that two ASEP processes. started from appropriate initial states and coupled using the so-called ""basic coupling,"" eventually reach the same state. We give various other results about the behaviour of second-class particles in the ASEP. In the totally asymmetric case (p = 1) we explain a further representation in terms of a multi-type particle system, and also use the collision result to derive the probability of coexistence of both clusters in a two-type version of the corner growth model.