961 resultados para Far-field Scattering
Resumo:
As a cultural field, the world of fashion is usually associated with ‘exclusive’ qualities such as celebrity, glamour and the value of being young beautiful and size 10. By and large fashion design courses adhere to this model of fashion production and consumption training their graduates to compete successfully in an industry that seems far removed from the notions inclusivity and connection of community engagement. However, alternative models can and do exist. This presentation tells the story of ‘the stitchery collective’ a group of graduates from QUTs Creative Industries Fashion program who are developing an innovative model of fashion practice focussed around the ideas and values both of community engagement and community cultural development. Their work to date has included projects that target specific community groups – such as “Fashioning Social Inclusion” (2010-2011) that works with Brisbane women who belong to migrant and refugee communities, as well as more recently “WARM” a workshop delivered to children at the 3rd International Kids’ Carnival hosted by La Biennale in Venice (February 2012). A common thread across these programs is a desire to investigate the premise that clothing and dress can potentially act as a lingua franca that enables connection and communication; and that in fact aspects of ‘fashion’ culture can be mobilised in a community focussed context to enhance cultural exchange. The issue of how ‘learning’ happens in these contexts provides rich scope for analysis and discussion – given the innovative and engaged nature of the work our discussion will particularly highlight the ‘leaning through doing’ that occurs as well as the ‘collective’ nature of the design processes we develop and promote. The story will include the voices and perspectives of several of the stitchery collective’s members as well as community partners.
Resumo:
This practice-based presentation explores the role of fashion as an agent for social inclusion and ethical design practice in communities. The Stitchery Collective is an artist-run initiative based in Brisbane, Australia. Operating at the intersection of craft and design, the fashion-based initiative challenges the assumption that fashion is designed, produced and consumed exclusively in the commercial sector. As a not-for-profit cooperative, the stitchery collective is the first and only fashion organisation in Australia to attract funding under the national and state artist-run-initiative scheme. The collective approach extends to the stitchery design practice, facilitated by individual practitioners working within the organisation who devise programs in the context of collaborative and socially engaged design. Working under the banner of a question, Can fashion be more than pretty clothes for pretty people? the stitchery works to extend the cultural field of fashion practice in the 21st century. The premise of dress as a ‘significant creative or cultural expression’ has informed the expanded definition of fashion practice, as adopted by the stitchery. This alternative classification has fostered partnerships with numerous community groups, including those marginalised in the contemporary fashion context such as recent migrants and refugees. Community engagement programs span design, sewing and up-cycling workshops, sustainability lectures, clothing swaps and public education seminars, supported by partnerships with various cultural, government and educational institutions. In 2011, the stitchery travelled to the Venice Biennale’s 3rd International Children’s Carnival, hosting a workshop series and installation to promote design for sustainability. The proven potential for design to connect community members has motivated the stitchery to question the opportunity for fashion practice to, perhaps uncharacteristically, operate under the banner of ‘design for social good’. Acknowledging craft and design as relational fields, this presentation expands fashion as a tool for social innovation and sustainable practice. The stitchery dislocates the consumer status of fashion with small-scale, localised projects; moving beyond fashion as a dictum of social class to an alternative model that is accessible, conscious, flexible, connected and sustainable. As an undefined post-industrial future approaches, the non-commercial status of the stitchery practice might work to present an image of the active post-consumer. How can the stitchery propose a resilient model of design for the future?
Resumo:
Growing food presents diverse challenges and opportunities within the urban environment. As cities develop, population density rises, land prices rise, and the opportunity to use land for traditional farming and gardening diminishes. Counter to this trend there are a growing number of both community gardens, city farms, guerrilla gardening, rooftop and vertical gardens, pot plants, windowsill herbs, and other balcony or backyard gardens cropping up in different cities, all with a purpose to produce food. This workshop brings to-gether practitioners and researchers in the field of urban agriculture and Hu-man-Computer Interaction to explore and opportunities for technology design to support the different forms of growing practice and foster local food production in cities. This 1-day workshop will serve as an active forum for researchers and practi-tioners across various fields including, but not limited to, agriculture and gar-dening, education, urban planning, human-computer interaction, and communi-ty engagement. This workshop has three distinct points of focus: i) Individual and small-scale gardening and food production, and how to connect like minded people who are involved in these practices to share their knowledge ii) Com-munities involved in urban agriculture, either through community gardens, city farms, or grassroots movements, often dependant on volunteer participation, providing the challenge of managing limited resources iii) Environmental and sociocultural sustainability through urban agriculture. The participants will have an opportunity to present their own work. This will be followed by a visit to a nearby city farm, which will provide a local context for a group design exercise. Finally the workshop will conclude with panel dis-cussions to review opportunities for further research and collaborations beyond the conference. For more information, please visit the workshop website, at http://www.urbaninformatics.net/resources/interact2013cfp/
Resumo:
LiFePO4 is a commercially available battery material with good theoretical discharge capacity, excellent cycle life and increased safety compared with competing Li-ion chemistries. It has been the focus of considerable experimental and theoretical scrutiny in the past decade, resulting in LiFePO4 cathodes that perform well at high discharge rates. This scrutiny has raised several questions about the behaviour of LiFePO4 material during charge and discharge. In contrast to many other battery chemistries that intercalate homogeneously, LiFePO4 can phase-separate into highly and lowly lithiated phases, with intercalation proceeding by advancing an interface between these two phases. The main objective of this thesis is to construct mathematical models of LiFePO4 cathodes that can be validated against experimental discharge curves. This is in an attempt to understand some of the multi-scale dynamics of LiFePO4 cathodes that can be difficult to determine experimentally. The first section of this thesis constructs a three-scale mathematical model of LiFePO4 cathodes that uses a simple Stefan problem (which has been used previously in the literature) to describe the assumed phase-change. LiFePO4 crystals have been observed agglomerating in cathodes to form a porous collection of crystals and this morphology motivates the use of three size-scales in the model. The multi-scale model developed validates well against experimental data and this validated model is then used to examine the role of manufacturing parameters (including the agglomerate radius) on battery performance. The remainder of the thesis is concerned with investigating phase-field models as a replacement for the aforementioned Stefan problem. Phase-field models have recently been used in LiFePO4 and are a far more accurate representation of experimentally observed crystal-scale behaviour. They are based around the Cahn-Hilliard-reaction (CHR) IBVP, a fourth-order PDE with electrochemical (flux) boundary conditions that is very stiff and possesses multiple time and space scales. Numerical solutions to the CHR IBVP can be difficult to compute and hence a least-squares based Finite Volume Method (FVM) is developed for discretising both the full CHR IBVP and the more traditional Cahn-Hilliard IBVP. Phase-field models are subject to two main physicality constraints and the numerical scheme presented performs well under these constraints. This least-squares based FVM is then used to simulate the discharge of individual crystals of LiFePO4 in two dimensions. This discharge is subject to isotropic Li+ diffusion, based on experimental evidence that suggests the normally orthotropic transport of Li+ in LiFePO4 may become more isotropic in the presence of lattice defects. Numerical investigation shows that two-dimensional Li+ transport results in crystals that phase-separate, even at very high discharge rates. This is very different from results shown in the literature, where phase-separation in LiFePO4 crystals is suppressed during discharge with orthotropic Li+ transport. Finally, the three-scale cathodic model used at the beginning of the thesis is modified to simulate modern, high-rate LiFePO4 cathodes. High-rate cathodes typically do not contain (large) agglomerates and therefore a two-scale model is developed. The Stefan problem used previously is also replaced with the phase-field models examined in earlier chapters. The results from this model are then compared with experimental data and fit poorly, though a significant parameter regime could not be investigated numerically. Many-particle effects however, are evident in the simulated discharges, which match the conclusions of recent literature. These effects result in crystals that are subject to local currents very different from the discharge rate applied to the cathode, which impacts the phase-separating behaviour of the crystals and raises questions about the validity of using cathodic-scale experimental measurements in order to determine crystal-scale behaviour.
Resumo:
The research reported here addresses the problem of athlete off-field behaviours as they influence sports’ sponsors, particularly the achievement of sponsorship objectives. The question arises because of incidents of sponsorship contract cancellation following news-media reporting of athletes’ off-field behaviours. Two studies are used to investigate the research question; the first establishes the content of news-media reports, and the second tests the effects of news’ reports on athlete, team and sponsor evaluations using an experimental design. Key assumptions of the research are that sponsorship objectives are principally consumer-based and mediated. Models of sponsorship argue that sponsors aim to reach and influence consumers through sponsees. Assuming this pathway exists is central to sponsorship activities. A corollary is that other mediators, in this case the news-media, may also communicate (uncontrollable) messages such that a consumer audience may be told of negative news that may then be associated with the sponsor. When sponsors cancel contracts it is assumed that their goal is to control the links between their brand and a negative referent. Balance theory is used to discuss the potential effects of negative off-field behaviours of athletes on sponsor’s objectives. Heider’s balance theory (1958) explains that individuals prefer to evaluate linked individuals or entities consistently. In the sponsorship context this presents the possibility that a negative evaluation of the athlete’s behaviour will contribute to correspondingly negative evaluations of the athlete’s team and sponsors. A content analysis (Study 1) was used to survey the types of athlete off-field behaviours commonly reported in a newspaper. In order to provide a local context for the research, articles from the Courier Mail were sampled and teams in the National Rugby League (NRL) competition were the focus of the research. The study identified nearly 2000 articles referring to the NRL competition; 258 of those refer to off-field incidents involving athletes. The various types of behaviours reported include assault, sexual assault allegations, driving under the influence of alcohol, illicit drug use, breaches of club rules, and positive off-field activities (i.e., charitable activities). An experiment (Study 2) tested three news’ article stimuli developed from the behaviours identified in Study 1 in a between-subjects design. A measure of Identification with the Team was used as a covariate variable in the Multivariate Analysis of Covariance analysis. Social identity theory suggests that when an individual identifies with a group, their attitudes and behaviours towards both in- and out-group members are modified. Use of Identification with the Team as a covariate acknowledges that respondents will evaluate behaviours differently according to the attribution of those behaviours to an in- or out-group member. Findings of the research suggest that the news’ article stimuli have significant, large effects on evaluations of athlete off-field behaviour and athlete Likability. Consistent with pretest results, charitable fundraising is regarded as extremely positive; the athlete, correspondingly, is likable. Assault is evaluated as extremely negative, and the athlete as unlikable. DUI scores reveal that the athlete’s behaviour is very negative; however, the athlete’s likability was evaluated as neutral. Treatment group does not produce any significant effects on team or sponsor variables. This research also finds that Identification with the Team has significant, large effects on team variables (Attitude toward the Brand and Corporate Image). Identification also has a significant large effect on athlete Likability, but not on Attitude toward the Act. Identification with the Team does not produce any significant effects on sponsor variables. The results of this research suggest that sponsor’s consumer-based objectives are not threatened by newspaper reports linking athlete off-field behaviour with their brand. Evaluations of sponsor variables (Attitude toward the Sponsor’s Brand and Corporate Image) were consistently positive. Variance in that data, however, cannot be attributed to experimental stimuli or Identification with the Team. These results argue that respondents may regard sponsorships, in principle, as good. Although it is good news for sponsors that negative evaluations of athletes will not produce correspondingly negative evaluations of consumer-based sponsorship objectives, the results indicate problems for sponsorship managers. The failure of Identification with the Team to explain sponsor variable variance indicates that the sponsor has not been evaluated as a linked entity in a relationship with the sporting team and athlete in this research. This result argues that the sponsee-mediated affective communication path that sponsors aim use to communicate with desirable publics is not necessarily a path available to them.
Resumo:
This practice-led research examines the generative function of loss in fiction that explores themes of grief and longing. This research considers how loss may be understood as a structuring mechanism through which characters evaluate time, resolve loss and affect future change. The creative work is a work of literary fiction titled A Distance Too Far Away. Aubrey, the story’s protagonist, is a woman in her twenties living in Brisbane in the early 1980s, carving out an independent life for herself away from her family. Through a flashback narrative sequence, told from the perspective of the twelve year narrator, Aubrey retraces a significant point of rupture in her life following a series of family tragedies. A Distance Too Far Away explores the tension between belonging and freedom, and considers how the past provides a malleable space for illuminating desire in order to traverse the gap between the world as it is and the world as we want it to be. The exegetical component of this research considers an alternative critical frame for interpreting the work of American author Anne Tyler, a writer who has had a significant influence on my own practice. Frequently criticised for creating sentimental and inert characters, many critics observe that nothing happens in Tyler’s circular plots. This research challenges these assertions, and through a contextual analysis of Tyler’s Ladder of Years (1995) investigates how Tyler engages with memory and nostalgia in order to move across time and resolve loss.
Resumo:
A procedure for the evaluation of multiple scattering contributions is described, for deep inelastic neutron scattering (DINS) studies using an inverse geometry time-of-flight spectrometer. The accuracy of a Monte Carlo code DINSMS, used to calculate the multiple scattering, is tested by comparison with analytic expressions and with experimental data collected from polythene, polycrystalline graphite and tin samples. It is shown that the Monte Carlo code gives an accurate representation of the measured data and can therefore be used to reliably correct DINS data.
Resumo:
The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.
Resumo:
In this paper we report a new neutron Compton scattering (NCS) measurement of the ground state single atom kinetic energy of polycrystalline beryllium at momentum transfers in the range 27}104 As ~1 and temperatures in the range 110}1150 K. The measurements have been made with the electron Volt spectrometer (eVS) at the ISIS facility and the measured kinetic energies are shown to be &10% higher than calculations made in the harmonic approximation.
Resumo:
We report inelastic neutron scattering measurements of the neutron Compton profile, J(y), for Be and for D in polycrystalline ZrD2 over a range of momentum transfers, q between 27 and 178 °A−1. The measurements were performed using the inverse geometry spectrometer eVS which is situated at the UK pulsed spallation neutron source ISIS. We have investigated deviations from impulse approximation (IA) scattering which are generically referred to as final state effects (FSEs) using a method described by Sears. This method allows both the magnitude and the q dependence of the FSE to be studied. Analysis of the measured data was compared with analysis of numerical simulations based on the harmonic approximation and good agreement was found for both ZrD2 and Be. Finally we have shown how (∇2V), where V is the interatomic potential, can be extracted from the antisymmetric component of J(y).
Resumo:
Due to their small collecting volume diodes are commonly used in small field dosimetry. However the relative sensitivity of a diode increases with decreasing small field size. Conversely, small air gaps have been shown to cause a significant decrease in the sensitivity of a detector as the field size is decreased. Therefore this study uses Monte Carlo simulations to look at introducing air upstream to diodes such that they measure with a constant sensitivity across all field sizes in small field dosimetry. Varying thicknesses of air were introduced onto the upstream end of two commercial diodes (PTW 60016 photon diode and PTW 60017 electron diode), as well as a theoretical unenclosed silicon chip using field sizes as small as 5 mm × 5 mm . The metric D_(w,Q)/D_(Det,Q) used in this study represents the ratio of the dose to a point of water to the dose to the diode active volume, for a particular field size and location. The optimal thickness of air required to provide a constant sensitivity across all small field sizes was found by plotting D_(w,Q)/D_(Det,Q) as a function of introduced air gap size for various field sizes, and finding the intersection point of these plots. That is, the point at which D_(w,Q)/D_(Det,Q) was constant for all field sizes was found. The optimal thickness of air was calculated to be 3.3 mm, 1.15 mm and 0.10 mm for the photon diode, electron diode and unenclosed silicon chip respectively. The variation in these results was due to the different design of each detector. When calculated with the new diode design incorporating the upstream air gap, k_(Q_clin 〖,Q〗_msr)^(f_clin 〖,f〗_msr ) was equal to unity to within statistical uncertainty (0.5 %) for all three diodes. Cross-axis profile measurements were also improved with the new detector design. The upstream air gap could be implanted on the commercial diodes via a cap consisting of the air cavity surrounded by water equivalent material. The results for the unclosed silicon chip show that an ideal small field dosimetry diode could be created by using a silicon chip with a small amount of air above it.
Resumo:
The feral pig, Sus scrofa, is a widespread and abundant invasive species in Australia. Feral pigs pose a significant threat to the environment, agricultural industry, and human health, and in far north Queensland they endanger World Heritage values of the Wet Tropics. Historical records document the first introduction of domestic pigs into Australia via European settlers in 1788 and subsequent introductions from Asia from 1827 onwards. Since this time, domestic pigs have been accidentally and deliberately released into the wild and significant feral pig populations have become established, resulting in the declaration of this species as a class 2 pest in Queensland. The overall objective of this study was to assess the population genetic structure of feral pigs in far north Queensland, in particular to enable delineation of demographically independent management units. The identification of ecologically meaningful management units using molecular techniques can assist in targeting feral pig control to bring about effective long-term management. Molecular genetic analysis was undertaken on 434 feral pigs from 35 localities between Tully and Innisfail. Seven polymorphic and unlinked microsatellite loci were screened and fixation indices (FST and analogues) and Bayesian clustering methods were used to identify population structure and management units in the study area. Sequencing of the hyper-variable mitochondrial control region (D-loop) of 35 feral pigs was also examined to identify pig ancestry. Three management units were identified in the study at a scale of 25 to 35 km. Even with the strong pattern of genetic structure identified in the study area, some evidence of long distance dispersal and/or translocation was found as a small number of individuals exhibited ancestry from a management unit outside of which they were sampled. Overall, gene flow in the study area was found to be influenced by environmental features such as topography and land use, but no distinct or obvious natural or anthropogenic geographic barriers were identified. Furthermore, strong evidence was found for non-random mating between pigs of European and Asian breeds indicating that feral pig ancestry influences their population genetic structure. Phylogenetic analysis revealed two distinct mitochondrial DNA clades, representing Asian domestic pig breeds and European breeds. A significant finding was that pigs of Asian origin living in Innisfail and south Tully were not mating randomly with European breed pigs populating the nearby Mission Beach area. Feral pig control should be implemented in each of the management units identified in this study. The control should be coordinated across properties within each management unit to prevent re-colonisation from adjacent localities. The adjacent rainforest and National Park Estates, as well as the rainforest-crop boundary should be included in a simultaneous control operation for greater success.
Resumo:
Introduction: The use of amorphous-silicon electronic portal imaging devices (a-Si EPIDs) for dosimetry is complicated by the effects of scattered radiation. In photon radiotherapy, primary signal at the detector can be accompanied by photons scattered from linear accelerator components, detector materials, intervening air, treatment room surfaces (floor, walls, etc) and from the patient/phantom being irradiated. Consequently, EPID measurements which presume to take scatter into account are highly sensitive to the identification of these contributions. One example of this susceptibility is the process of calibrating an EPID for use as a gauge of (radiological) thickness, where specific allowance must be made for the effect of phantom-scatter on the intensity of radiation measured through different thicknesses of phantom. This is usually done via a theoretical calculation which assumes that phantom scatter is linearly related to thickness and field-size. We have, however, undertaken a more detailed study of the scattering effects of fields of different dimensions when applied to phantoms of various thicknesses in order to derive scattered-primary ratios (SPRs) directly from simulation results. This allows us to make a more-accurate calibration of the EPID, and to qualify the appositeness of the theoretical SPR calculations. Methods: This study uses a full MC model of the entire linac-phantom-detector system simulated using EGSnrc/BEAMnrc codes. The Elekta linac and EPID are modelled according to specifications from the manufacturer and the intervening phantoms are modelled as rectilinear blocks of water or plastic, with their densities set to a range of physically realistic and unrealistic values. Transmissions through these various phantoms are calculated using the dose detected in the model EPID and used in an evaluation of the field-size-dependence of SPR, in different media, applying a method suggested for experimental systems by Swindell and Evans [1]. These results are compared firstly with SPRs calculated using the theoretical, linear relationship between SPR and irradiated volume, and secondly with SPRs evaluated from our own experimental data. An alternate evaluation of the SPR in each simulated system is also made by modifying the BEAMnrc user code READPHSP, to identify and count those particles in a given plane of the system that have undergone a scattering event. In addition to these simulations, which are designed to closely replicate the experimental setup, we also used MC models to examine the effects of varying the setup in experimentally challenging ways (changing the size of the air gap between the phantom and the EPID, changing the longitudinal position of the EPID itself). Experimental measurements used in this study were made using an Elekta Precise linear accelerator, operating at 6MV, with an Elekta iView GT a-Si EPID. Results and Discussion: 1. Comparison with theory: With the Elekta iView EPID fixed at 160 cm from the photon source, the phantoms, when positioned isocentrically, are located 41 to 55 cm from the surface of the panel. At this geometry, a close but imperfect agreement (differing by up to 5%) can be identified between the results of the simulations and the theoretical calculations. However, this agreement can be totally disrupted by shifting the phantom out of the isocentric position. Evidently, the allowance made for source-phantom-detector geometry by the theoretical expression for SPR is inadequate to describe the effect that phantom proximity can have on measurements made using an (infamously low-energy sensitive) a-Si EPID. 2. Comparison with experiment: For various square field sizes and across the range of phantom thicknesses, there is good agreement between simulation data and experimental measurements of the transmissions and the derived values of the primary intensities. However, the values of SPR obtained through these simulations and measurements seem to be much more sensitive to slight differences between the simulated and real systems, leading to difficulties in producing a simulated system which adequately replicates the experimental data. (For instance, small changes to simulated phantom density make large differences to resulting SPR.) 3. Comparison with direct calculation: By developing a method for directly counting the number scattered particles reaching the detector after passing through the various isocentric phantom thicknesses, we show that the experimental method discussed above is providing a good measure of the actual degree of scattering produced by the phantom. This calculation also permits the analysis of the scattering sources/sinks within the linac and EPID, as well as the phantom and intervening air. Conclusions: This work challenges the assumption that scatter to and within an EPID can be accounted for using a simple, linear model. Simulations discussed here are intended to contribute to a fuller understanding of the contribution of scattered radiation to the EPID images that are used in dosimetry calculations. Acknowledgements: This work is funded by the NHMRC, through a project grant, and supported by the Queensland University of Technology (QUT) and the Royal Brisbane and Women's Hospital, Brisbane, Australia. The authors are also grateful to Elekta for the provision of manufacturing specifications which permitted the detailed simulation of their linear accelerators and amorphous-silicon electronic portal imaging devices. Computational resources and services used in this work were provided by the HPC and Research Support Group, QUT, Brisbane, Australia.
Resumo:
The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.