969 resultados para Fall program update (LACUNY Membership Drive)
Resumo:
Identification and analysis of nonbonded interactions within a molecule and with the surrounding molecules are an essential part of structural studies, given the importance of these interactions in defining the structure and function of any supramolecular entity. MolBridge is an easy to use algorithm based purely on geometric criteria that can identify all possible nonbonded interactions, such as hydrogen bond, halogen bond, cation-pi, pi-pi and van der Waals, in small molecules as well as biomolecules. The user can either upload three-dimensional coordinate files or enter the molecular ID corresponding to the relevant database. The program is available in a standalone form and as an interactive web server with Jmol and JME incorporated into it. The program is freely downloadable and the web server version is also available at http://nucleix.mbu.iisc.ernet.in/molbridge/index.php.
Resumo:
This paper demonstrates light-load instability in open-loop induction motor drives on account of inverter dead-time. The dynamic equations of an inverter fed induction motor, incorporating the effect of dead-time, are considered. A procedure to derive the small-signal model of the motor, including the effect of inverter dead-time, is presented. Further, stability analysis is carried out on a 100-kW, 415V, 3-phase induction motor considering no-load. For voltage to frequency (i.e. V/f) ratios between 0.5 and 1 pu, the analysis brings out regions of instability on the V-f plane, in the frequency range between 5Hz and 20Hz. Simulation and experimental results show sub-harmonic oscillations in the motor current in this region, confirming instability as predicted by the analysis.
Resumo:
Multilevel inverters with dodecagonal (12-sided polygon) voltage space vector structure have advantages, such as complete elimination of fifth and seventh harmonics, reduction in electromagnetic interference, reduction in device voltage ratings, reduction of switching frequency, extension of linear modulation range, etc., making it a viable option for high-power medium-voltage drives. This paper proposes two power circuit topologies capable of generating multilevel dodecagonal voltage space vector structure with symmetric triangles (for the first time) with minimum number of dc-link power supplies and floating capacitor H-bridges. The first power topology is composed of two hybrid cascaded five-level inverters connected to either side of an open-end winding induction machine. Each inverter consists of a three-level neutral-point-clamped inverter, which is cascaded with an isolated H-bridge making it a five-level inverter. The second topology is for a normal induction motor. Both of these circuit topologies have inherent capacitor balancing for floating H-bridges for all modulation indexes, including transient operations. The proposed topologies do not require any precharging circuitry for startup. A simple pulsewidth modulation timing calculation method for space vector modulation is also presented in this paper. Due to the symmetric arrangement of congruent triangles within the voltage space vector structure, the timing computation requires only the sampled reference values and does not require any offline computation, lookup tables, or angle computation. Experimental results for steady-state operation and transient operation are also presented to validate the proposed concept.
Resumo:
In this paper, a 5th and 7th harmonic suppression technique for a 2-level VSI fed IM drive, by using capacitive filtering is proposed. A capacitor fed 2-level inverter is used on an open-end winding induction motor to suppress all 5th and 7th order harmonics. A PWM scheme that maintains the capacitor voltage, while suppressing the harmonics is also proposed. The proposed scheme is valid for the entire modulation range, including overmodulation and six-step mode of operation of the main inverter.
Resumo:
This paper presents the experimental results for an attractive control scheme implementation using an 8 bit microcontroller. The power converter involved is a 3 phase full controlled bridge rectifier. A single quadrant DC drive has been realized and results have been presented for both open and closed loop implementations.
SUB1 Plays a Negative Role during Starvation Induced Sporulation Program in Saccharomyces cerevisiae
Resumo:
Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1. cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1. sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation.
Resumo:
Multilevel inverters with hexagonal voltage space vector structures have improved performance of induction motor drives compared to that of the two level inverters. Further reduction in the torque ripple on the motor shaft is possible by using multilevel dodecagonal (12-sided polygon) voltage space vector structures. The advantages of dodecagonal voltage space vector based PWM techniques are the complete elimination of fifth and seventh harmonics in phase voltages for the full modulation range and the extension of linear modulation range. This paper proposes an inverter circuit topology capable of generating multilevel dodecagonal voltage space vectors with symmetric triangles, by cascading two asymmetric three level inverters with isolated H-Bridges. This is made possible by proper selection of DC link voltages and the selection of resultant switching states for the inverters. In this paper, a simple PWM timing calculation method is proposed. Experimental results have also been presented in this paper to validate the proposed concept.
Resumo:
In this paper, a multilevel dodecagonal voltage space vector structure with nineteen concentric dodecagons is proposed for the first time. This space vector structure is achieved by cascading two sets of asymmetric three-level inverters with isolated H-bridges on either side of an open-end winding induction motor. The dodecagonal structure is made possible by proper selection of dc link voltages and switching states of the inverters. The proposed scheme retains all the advantages of multilevel topologies as well as the advantages of dodecagonal voltage space vector structure. In addition to that, a generic and simple method for calculation of pulsewidth modulation timings using only sampled reference values (v(alpha) and v(beta)) is proposed. This enables the scheme to be used for any closed-loop application such as vector control. In addition, a new method of switching technique is proposed, which ensures minimum switching while eliminating the fifth-and seventh-order harmonics and suppressing the eleventh and thirteenth harmonics, eliminating the need for bulky filters. The motor phase voltage is a 24-stepped wave-form for the entire modulation range thereby reducing the number of switchings of the individual inverter modules. Experimental results for steady-state operation, transient operation, including start-up have been presented and the results of fast Fourier transform analysis is also presented for validating the proposed concept.
Resumo:
A range constraint method viz. centroid method is proposed to fuse the navigation information of dual (right and left) foot-mounted Zero-velocity-UPdaTe (ZUPT)-aided Inertial Navigation Systems (INSs). Here, the range constraint means that the distance of separation between the position estimates of right and left foot ZUPT-aided INSs cannot be greater than a quantity known as foot-to-foot maximum separation. We present the experimental results which illustrate the applicability of the proposed method. The results show that the proposed method significantly enhances the accuracy of the navigation solution when compared to using two uncoupled foot-mounted ZUPT-aided INSs. Also, we compare the performance of the proposed method with the existing data fusion methods.
Resumo:
This paper demonstrates light-load instability in a 100-kW open-loop induction motor drive on account of inverter deadtime. An improved small-signal model of an inverter-fed induction motor is proposed. This improved model is derived by linearizing the nonlinear dynamic equations of the motor, which include the inverter deadtime effect. Stability analysis is carried out on the 100-kW415-V three-phase induction motor considering no load. The analysis brings out the region of instability of this motor drive on the voltage versus frequency (V-f) plane. This region of light-load instability is found to expand with increase in inverter deadtime. Subharmonic oscillations of significant amplitude are observed in the steady-state simulated and measured current waveforms, at numerous operating points in the unstable region predicted, confirming the validity of the stability analysis. Furthermore, simulation and experimental results demonstrate that the proposed model is more accurate than an existing small-signal model in predicting the region of instability.
Resumo:
We develop a new dictionary learning algorithm called the l(1)-K-svp, by minimizing the l(1) distortion on the data term. The proposed formulation corresponds to maximum a posteriori estimation assuming a Laplacian prior on the coefficient matrix and additive noise, and is, in general, robust to non-Gaussian noise. The l(1) distortion is minimized by employing the iteratively reweighted least-squares algorithm. The dictionary atoms and the corresponding sparse coefficients are simultaneously estimated in the dictionary update step. Experimental results show that l(1)-K-SVD results in noise-robustness, faster convergence, and higher atom recovery rate than the method of optimal directions, K-SVD, and the robust dictionary learning algorithm (RDL), in Gaussian as well as non-Gaussian noise. For a fixed value of sparsity, number of dictionary atoms, and data dimension, l(1)-K-SVD outperforms K-SVD and RDL on small training sets. We also consider the generalized l(p), 0 < p < 1, data metric to tackle heavy-tailed/impulsive noise. In an image denoising application, l(1)-K-SVD was found to result in higher peak signal-to-noise ratio (PSNR) over K-SVD for Laplacian noise. The structural similarity index increases by 0.1 for low input PSNR, which is significant and demonstrates the efficacy of the proposed method. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A split-phase induction motor is fed from two three-phase voltage source inverters for speed control. This study analyses carrier-comparison based pulse width modulation (PWM) schemes for a split-phase motor drive, from a space-vector perspective. Sine-triangle PWM, one zero-sequence injection PWM where the same zero-sequence signal is used for both the inverters, and another zero-sequence injection PWM where different zero-sequence signals are employed for the two inverters are considered. The set of voltage vectors applied, the sequence in which the voltage vectors are applied, and the resulting current ripple vector are analysed for all the PWM methods. Besides all the PWM methods are compared in terms of dc bus utilisation. For the same three-phase sine reference, the PWM method with different zero-sequence signals for the two inverters is found to employ a set of vectors different from the other methods. Both analysis and experimental results show that this method results in lower total harmonic distortion and higher dc bus utilisation than the other two PWM methods.
Resumo:
The objective of this paper is to study the influence of inverter dead-time on steady as well as dynamic operation of an open-loop induction motor drive fed from a voltage source inverter (VSI). Towards this goal, this paper presents a systematic derivation of a dynamic model for an inverter-fed induction motor, incorporating the effect of inverter dead-time, in the synchronously revolving dq reference frame. Simulation results based on this dynamic model bring out the impact of inverter dead-time on both the transient response and steady-state operation of the motor drive. For the purpose of steady-state analysis, the dynamic model of the motor drive is used to derive a steady-state model, which is found to be non-linear. The steady-state model shows that the impact of dead-time can be seen as an additional resistance in the stator circuit, whose value depends on the stator current. Towards precise evaluation of this dead-time equivalent resistance, an analytical expression is proposed for the same in terms of inverter dead-time, switching frequency, modulation index and load impedance. The notion of dead-time equivalent resistance is shown to simplify the solution of the non-linear steady-state model. The analytically evaluated steady-state solutions are validated through numerical simulations and experiments.
Resumo:
We perform global linear stability analysis and idealized numerical simulations in global thermal balance to understand the condensation of cold gas from hot/virial atmospheres (coronae), in particular the intracluster medium (ICM). We pay particular attention to geometry (e.g. spherical versus plane-parallel) and the nature of the gravitational potential. Global linear analysis gives a similar value for the fastest growing thermal instability modes in spherical and Cartesian geometries. Simulations and observations suggest that cooling in haloes critically depends on the ratio of the cooling time to the free-fall time (t(cool)/t(ff)). Extended cold gas condenses out of the ICM only if this ratio is smaller than a threshold value close to 10. Previous works highlighted the difference between the nature of cold gas condensation in spherical and plane-parallel atmospheres; namely, cold gas condensation appeared easier in spherical atmospheres. This apparent difference due to geometry arises because the previous plane-parallel simulations focused on in situ condensation of multiphase gas but spherical simulations studied condensation anywhere in the box. Unlike previous claims, our non-linear simulations show that there are only minor differences in cold gas condensation, either in situ or anywhere, for different geometries. The amount of cold gas depends on the shape of tcool/tff; gas has more time to condense if gravitational acceleration decreases towards the centre. In our idealized plane-parallel simulations with heating balancing cooling in each layer, there can be significant mass/energy/momentum transfer across layers that can trigger condensation and drive tcool/tff far beyond the critical value close to 10.