924 resultados para Fall and mobility sensor


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Background: In light of the multifactorial etiology of fall-related hip fracture, knowledge of fall circumstances may be especially valuable when placed in the context of the health of the person who falls. We aimed to investigate the circumstances surrounding fall-related hip fractures and to describe fall circumstances in relation to participants' health and functional characteristics. Methods: The fall circumstances of 125 individuals (age >= 50 years) with hip fracture were investigated using semi-structured interviews. Data concerning participants' health (comorbidities and medications) and function (self-reported performance of mobility, balance, personal activities of daily living and physical activity, previous falls and hand grip strength) were collected via medical records, questionnaires and dynamometry. Using a mixed methods design, both data sets were analysed separately and then merged in order to provide a comprehensive description of fall events and identify eventual patterns in the data. Results: Fall circumstances were described as i) Activity at the time of the fall: Positional change (n = 24, 19%); Standing (n = 16, 13%); Walking (n = 71, 57%); Balance challenging (n = 14, 11%) and ii) Nature of the fall: Environmental (n = 32, 26%); Physiological (n = 35, 28%); Activity-related indoor (n = 8, 6%) and outdoor (n = 8, 6%); Trips and slips on snow (n = 20, 16%) and in snow-free conditions (n = 12, 10%) and Unknown (n = 10, 8%). We observed the following patterns regarding fall circumstances and participants' health: those who fell i) during positional change had the poorest functional status; ii) due to environmental reasons (indoors) had moderate physical function, but high levels of comorbidity and fall risk increasing medications; iii) in snow-free environments (outdoors) appeared to have a poorer health and functional status than other outdoor groups. Conclusions: Our findings indicate that patterns exist in relation to the falls circumstances and health characteristics of people with hip fracture which build upon that previously reported. These patterns, when verified, can provide useful information as to the ways in which fall prevention strategies can be tailored to individuals of varying levels of health and function who are at risk for falls and hip fracture.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require realtime video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Precision Spray is a technique to increase performance of Precision Agriculture. This spray technique may be aided by a Wireless Sensor Network, however, for such approach, the communication between the agricultural input applicator vehicle and network is critical due to its proper functioning. Thus, this work analyzes how the number of nodes in a wireless sensor network, its type of distribution and different areas of scenario affects the performance of communication. We performed simulations to observe system's behavior changing to find the most fitted non-controlled mobility model to the system.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Falls are caused by complex interaction between multiple risk factors which may be modified by age, disease and environment. A variety of methods and tools for fall risk assessment have been proposed, but none of which is universally accepted. Existing tools are generally not capable of providing a quantitative predictive assessment of fall risk. The need for objective, cost-effective and clinically applicable methods would enable quantitative assessment of fall risk on a subject-specific basis. Tracking objectively falls risk could provide timely feedback about the effectiveness of administered interventions enabling intervention strategies to be modified or changed if found to be ineffective. Moreover, some of the fundamental factors leading to falls and what actually happens during a fall remain unclear. Objectively documented and measured falls are needed to improve knowledge of fall in order to develop more effective prevention strategies and prolong independent living. In the last decade, several research groups have developed sensor-based automatic or semi-automatic fall risk assessment tools using wearable inertial sensors. This approach may also serve to detect falls. At the moment, i) several fall-risk assessment studies based on inertial sensors, even if promising, lack of a biomechanical model-based approach which could provide accurate and more detailed measurements of interests (e.g., joint moments, forces) and ii) the number of published real-world fall data of older people in a real-world environment is minimal since most authors have used simulations with healthy volunteers as a surrogate for real-world falls. With these limitations in mind, this thesis aims i) to suggest a novel method for the kinematics and dynamics evaluation of functional motor tasks, often used in clinics for the fall-risk evaluation, through a body sensor network and a biomechanical approach and ii) to define the guidelines for a fall detection algorithm based on a real-world fall database availability.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require real-time video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staff

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The tragic events of September 11th ushered a new era of unprecedented challenges. Our nation has to be protected from the alarming threats of adversaries. These threats exploit the nation's critical infrastructures affecting all sectors of the economy. There is the need for pervasive monitoring and decentralized control of the nation's critical infrastructures. The communications needs of monitoring and control of critical infrastructures was traditionally catered for by wired communication systems. These technologies ensured high reliability and bandwidth but are however very expensive, inflexible and do not support mobility and pervasive monitoring. The communication protocols are Ethernet-based that used contention access protocols which results in high unsuccessful transmission and delay. An emerging class of wireless networks, named embedded wireless sensor and actuator networks has potential benefits for real-time monitoring and control of critical infrastructures. The use of embedded wireless networks for monitoring and control of critical infrastructures requires secure, reliable and timely exchange of information among controllers, distributed sensors and actuators. The exchange of information is over shared wireless media. However, wireless media is highly unpredictable due to path loss, shadow fading and ambient noise. Monitoring and control applications have stringent requirements on reliability, delay and security. The primary issue addressed in this dissertation is the impact of wireless media in harsh industrial environment on the reliable and timely delivery of critical data. In the first part of the dissertation, a combined networking and information theoretic approach was adopted to determine the transmit power required to maintain a minimum wireless channel capacity for reliable data transmission. The second part described a channel-aware scheduling scheme that ensured efficient utilization of the wireless link and guaranteed delay. Various analytical evaluations and simulations are used to evaluate and validate the feasibility of the methodologies and demonstrate that the protocols achieved reliable and real-time data delivery in wireless industrial networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding the emergence of extreme opinions and in what kind of environment they might become less extreme is a central theme in our modern globalized society. A model combining continuous opinions and observed discrete actions (CODA) capable of addressing the important issue of measuring how extreme opinions might be has been recently proposed. In this paper I show extreme opinions to arise in a ubiquitous manner in the CODA model for a multitude of social network structures. Depending on network details reducing extremism seems to be possible. However, a large number of agents with extreme opinions is always observed. A significant decrease in the number of extremists can be observed by allowing agents to change their positions in the network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work describes the coupling of a biomimetic sensor to a flow injection system for the sensitive determination of paracetamol. The sensor was prepared as previously described in the literature (M. D. P. T. Sotomayor, A. Sigoli, M. R. V. Lanza, A. A. Tanaka and L. T. Kubota, J. Braz. Chem. Soc., 2008, 19, 734) by modifying a glassy carbon electrode surface with a Nafion (R) membrane doped with iron tetrapyridinoporphyrazine (FeTPyPz), a biomimetic catalyst of the P450 enzyme. The performance of the sensor for paracetamol detection was investigated and optimized in a flow injection system (FIA) using a wall jet electrochemical cell. Under optimized conditions a wide linear response range (1.0 x 10(-5) to 5.0 x 10(-2) mol L(-1)) was obtained, with a sensitivity of 2579 (+/- 129) mu A L mu mol(-1). The detection and quantification limits of the sensor for paracetamol in the FIA system were 1.0 and 3.5 mu mol L(-1), respectively. The analytical frequency was 51 samples h(-1), and over a period of five days (320 determinations) the biosensor maintained practically the same response. The system was successfully applied to paracetamol quantification in seven pharmaceutical formulations and in water samples from six rivers in Sao Paulo State, Brazil.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Falls are one of the greatest concerns among the elderly A number of studies have described peak torque as one of the best fall-related predictor. No studies have comprehensively focused on the rate of torque development of the lower limb muscles among elderly fallers. Then, the aim of this study was to determine the relationship between muscle peak torque and rate of torque development of the lower limb joints in elderly with and without fall history It was also aimed to determine whether these parameters of muscle performance (i e, peak torque and rate of torque development) are related to the number of falls. Methods: Thirty-one women volunteered to participate in the study and were assigned in one of the groups according to the number of falls over the 12 months that preceded the present Then, participants with no fall history (Cl; n = 13; 67.6[7.5] years-old), one fall (GII; n = 8, 66 0[4 91 years-old) and two or more falls (GIII, n = 10; 67.8[8.8] years-old) performed a number of lower limb maximal isometric voluntary contractions from which peak torque and rate of torque development were quantified Findings. Primary outcomes indicated no peak torque differences between experimental groups in any lower limb joint. The rate of torque development of the knee flexor muscles observed in the non-fallers (Cl) was greater than that observed in the fallers (P < 0.05) and had a significant relationship with the number of falls (P < 0 05) Interpretation. The greater knee flexor muscles` rate of torque development found in the non-fallers in comparison to the fallers indicated that the ability of the elderly to rapidly reorganise the arrangement of the lower limb may play a significant role in allowing the elderly to recover balance after a trip. Thus, training stimulus aimed to improve the rate of torque development may be more beneficial to prevent falls among the elderly than other training stimulus, which are not specifically designed to improve the ability to rapidly produce large amounts of torque (C) 2010 Published by Elsevier Ltd

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction between poly(o-ethoxyaniline) (POEA) adsorbed onto solid substrates and humic substances (HS) and Cu(2+) ions has been investigated using UV-vis spectroscopy and atomic force microscopy (AFM). Both HS and Cu(2+) are able to dope POEA and change film morphology. This interaction was exploited in a sensor array made with nanostructured films of POEA, sulfonated lignin and HS, which could detect small concentrations of HS and Cu(2+) in water. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The simultaneous use of different sensors technologies is an efficient method to increase the performance of chemical sensors systems. Among the available technologies, mass and capacitance transducers are particularly interesting because they can take advantage also from non-conductive sensing layers, such as most of the more interesting molecular recognition systems. In this paper, an array of quartz microbalance sensors is complemented by an array of capacitors obtained from a commercial biometrics fingerprints detector. The two sets of transducers, properly functionalized by sensitive molecular and polymeric films, are utilized for the estimation of adulteration in gasolines, and in particular to quantify the content of ethanol in gasolines, an application of importance for Brazilian market. Results indicate that the hybrid system outperforms the individual sensor arrays even if the quantification of ethanol in gasoline, due to the variability of gasolines formulation, is affected by a barely acceptable error. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a previous study, we observed no spatial genetic structure in Mexican populations of the parasitoids Chelonus insularis Cresson (Hymenoptera: Braconidae) and Campoletis sonorensis Cameron (Hymenoptera: Ichneumonidae) by using microsatellite markers In the current study, we Investigated whether for these important parasitoids of the fall armyworm (Lepidoptera: Noctuidae) there is any genetic structure at a larger scale Insects of both species were collected across the American continent and their phylogeography was Investigated using both nuclear and mitochondria] markers Our results suggest an ancient north-south migration of C insularis, whereas no clear pattern] could be determined for C sonorensis. Nonetheless, the resulting topology indicated the existence of a cryptic taxon within this later species. a few Canadian specimens determined as C. sonorensis branch outside a clack composed of the Argentinean Chelonus grioti Blanchard, the Brazilian Chelonus flavicincta Ashmead, and the rest of the C sonorensis individuals The individuals revealing the cryptic taxon were collected from Thichoplusia in (Hubner) (Lepidoptera. Noctuidae) on tomato (Lycopersicon spp) and may represent a biotype that has adapted to the early season phenology of its host. Overall, the loosely defined spatial genetic structure previously shown at a local fine scale also was found at the larger scale, for both species Dispersal of these insects may be partly driven by wind as suggested by genetic similarities between Individuals coming from very distant locations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pyrrolnitrin (PRN) is a tryptophan-derived secondary metabolite produced by a narrow range of Gram-negative bacteria. The PRN biosynthesis by rhizobacteria presumably has a key role in their life strategies and in the biocontrol of plant diseases. The biosynthetic operon that encodes the pathway that converts tryptophan to PRN is composed of four genes, prnA through D, whose diversity, genomic context and spread over bacterial genomes are poorly understood. Therefore, we launched an endeavour aimed at retrieving, by in vitro and in silico means, diverse bacteria carrying the prnABCD biosynthetic loci in their genomes. Analysis of polymorphisms of the prnD gene sequences revealed a high level of conservation between Burkholderia, Pseudomonas and Serratia spp. derived sequences. Whole-operon- and prnD-based phylogeny resulted in tree topologies that are incongruent with the taxonomic status of the evaluated strains as predicted by 16S rRNA gene phylogeny. The genomic composition of c. 20 kb DNA fragments containg the PRN operon varied in different strains. Highly conserved and distinct transposase-encoding genes surrounding the PRN biosynthetic operons of Burkholderia pseudomallei strains were found. A prnABCD-deprived genomic region in B. pseudomallei strain K96243 contained the same gene composition as, and shared high homology with, the flanking regions of the PRN operon in B. pseudomallei strains 668, 1106a and 1710b. Our results strongly suggest that the PRN biosynthetic operon is mobile. The extent, frequency and promiscuity of this mobility remain to be understood.