888 resultados para Faculty and Staff
Resumo:
1. The crabeater seal Lobodon carcinophaga is considered to be a key species in the krill-based food web of the Southern Ocean. Reliable estimates of the abundance of this species are necessary to allow the development of multispecies, predator–prey models as a basis for management of the krill fishery in the Southern Ocean. 2. A survey of crabeater seal abundance was undertaken in 1500 000 km2 of pack-ice off east Antarctica between longitudes 64–150° E during the austral summer of 1999/2000. Sighting surveys, using double observer line transect methods, were conducted from an icebreaker and two helicopters to estimate the density of seals hauled out on the ice in survey strips. Satellite-linked dive recorders were deployed on a sample of seals to estimate the probability of seals being hauled out on the ice at the times of day when sighting surveys were conducted. Model-based inference, involving fitting a density surface, was used to infer densities in the entire survey region from estimates in the surveyed areas. 3. Crabeater seal abundance was estimated to be between 0.7 and 1.4 million animals (with 95% confidence), with the most likely estimate slightly less than 1 million. 4. Synthesis and applications. The estimation of crabeater seal abundance in Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR) management areas off east Antarctic where krill biomass has also been estimated recently provides the data necessary to begin extending from single-species to multispecies management of the krill fishery. Incorporation of all major sources of uncertainty allows a precautionary interpretation of crabeater abundance and demand for krill in keeping with CCAMLR’s precautionary approach to management. While this study focuses on the crabeater seal and management of living resources in the Southern Ocean, it has also led to technical and theoretical developments in survey methodology that have widespread potential application in ecological and resource management studies, and will contribute to a more fundamental understanding of the structure and function of the Southern Ocean ecosystem.
Resumo:
Antarctic fur seals (Arctocephalus gazella) in the South Shetland Islands are recovering from 19th-century exploitation more slowly than the main population at South Georgia. To document demographic changes associated with the recovery in the South Shetlands, we monitored fur seal abundance and reproduction in the vicinity of Elephant Island during austral summers from 1986/1987 through 1994/1995. Total births, mean and variance of birth dates, and average daily mortality rates were estimated from daily live pup counts at North Cove (NC) and North Annex (NA) colonies on Seal Island. Sightings of leopard seals (Hydrurga leptonyx) and incidents of leopard seal predation on fur seal pups were recorded opportunistically during daily fur seal research at both sites. High mortality of fur seal pups, attributed to predation by leopard seals frequently observed at NC, caused pup numbers to decline rapidly between January and March (i.e., prior to weaning) each year and probably caused a long-term decline in the size of that colony. The NA colony, where leopard seals were never observed, increased in size during the study. Pup mortality from causes other than leopard seal predation appeared to be similar at the two sites. The number of pups counted at four locations in the Elephant Island vicinity increased slowly, at an annual rate of 3.8%, compared to rates as high as 11% at other locations in the South Shetland Islands. Several lines of circumstantial evidence are consistent with the hypothesis that leopard seal predators limit the growth of the fur seal population in the Elephant Island area and perhaps in the broader population in the South Shetland Islands. The sustained growth of this fur seal population over many decades rules out certain predator–prey models, allowing inference about the interaction between leopard seals and fur seals even though it is less thoroughly studied than predator–prey systems of terrestrial vertebrates of the northern hemisphere. Top-down forces should be included in hypotheses for future research on the factors shaping the recovery of the fur seal population in the South Shetland Islands.
Resumo:
This study’s objective was to investigate mandibular fractures in 50 short-finned pilot whales, Globicephala macrorhynchus, from two mass strandings. Based on current theories that this species is sexually dimorphic and polygynous, hypotheses were: (1) males should suffer more frequent or more substantial mandibular fractures than should females, and (2) fracture occurrence should increase with male reproductive maturity and potential correlates of maturity, such as age and length. Fractures were described and correlated with physical characteristics to infer possible explanations for injuries. Mandibular fractures were surprisingly common in males and females, being found in more than half of the animals examined (27/50, or 54% overall; 17/36 or 47% of females and 10/14 or 71% of males). Length was the only correlate of fracture presence; the proportion of animals showing evidence of fracture increased with length. These results offer some support to initial hypotheses, but there must be another set of consequences that contribute to mandibular fractures in females. A combination of intra- and interspecific interactions and life history characteristics may be responsible for fractures. Further research from a larger sample of this and other cetacean species are suggested to help elucidate both the causes and implications of mandibular fractures.
Resumo:
From October 1996 through September 1998, we used bottom-mounted hydrophone arrays to monitor deep-water areas north and west of the British Isles for songs of humpback whales (Megaptera novaeangliae). Singing humpbacks were consistently detected between October and March from the Shetland- Faroe Islands south to waters west of the English Channel. Temporal and geographic patterns of song detections, and movements of individually tracked whales, exhibited a southwesterly trend over this period, but with no corresponding northward trend between April and September. These results, together with a review of historical data from this area, suggest that the offshore waters of the British Isles represent a migration corridor for humpbacks, at least some of which summer in Norwegian (and possibly eastern Icelandic) waters. The migratory destination of the detected animals remains unknown, but the limited data suggest that these whales are bound primarily for the West Indies rather than historical breeding areas off the northwestern coast of Africa. Humpbacks detected in British waters after early to mid- March probably do not undertake a full migration to the tropics. These data provide further evidence that singing is not confined to tropical waters in winter, but occurs commonly on migration even in high latitudes.
Resumo:
We describe a novel behavior, termed “tail-up,” observed in humpback whales (Megaptera novaeangliae) on wintering grounds on Abrolhos Bank, Brazil. The behavior involves the whale positioned vertically in the water column with its tail in the air. Wirh the exception of calves, tail-up was observed in all social classes, and its frequency increased through the end of the season. Tail-ups were recorded in 144 (5.8%) of 2,465 groups of whales observed from a shore station, and in 297 (14.9%) of 1,996 groups observed from vessel surveys; biases in each method suggest that the true frequency lies between these sources. One hundred and fifty-two hours of continuous sampling showed that the duration of tail-up events lasted from a few seconds to 12 min and was longest in groups comprised of a single adult. The maximum duration of a recorded period that consistently included tail-up was 10 h; however, some individuals were observed to engage in the behavior at night and for four consecutive days. Tail-up movement speed did not vary by social class; however, it varied according to wind direction and speed. The characteristics of tail-up that we observed showed that it differed from the descriptions of similar behaviors in other cetacean species. The function of tail-up is unknown, but we suggest that it may be a multifunctional behavior.
Resumo:
Results from a large-scale, capture–recapture study of humpback whales Megaptera novaeangliae in the North Atlantic show that migration timing is influenced by feeding ground origin. No significant differences were observed in the number of individuals from any feeding area that were re-sighted in the common breeding area in the West Indies. However, there was a relationship between the proportion (logit transformed) of West Indies sightings and longitude (r2 = 0.97, F1,3 = 98.27, P = 0.0022) suggesting that individuals feeding farther to the east are less likely to winter in the West Indies. A relationship was also detected between sighting date in the West Indies and feeding area. Mean sighting dates in the West Indies for individuals identified in the Gulf of Maine and eastern Canada were significantly earlier than those for animals identified in Greenland, Iceland and Norway (9.97 days, t179 = 3.53, P = 0.00054). There was also evidence for sexual segregation in migration; males were seen earlier on the breeding ground than were females (6.63 days, t105 = 1.98, P = 0.050). This pattern was consistently observed for animals from all feeding areas; a combined model showed a significant effect for both sex (F1 = 5.942, P = 0.017) and feeding area (F3 =4.756, P=0.0038). The temporal difference in occupancy of the West Indies between individuals from different feeding areas, coupled with sexual differences in migratory patterns, presents the possibility that there are reduced mating opportunities between individuals from different high latitude areas.
Resumo:
Knowledge of the local and migratory movements of humpback whales (Megaptera novaeangliae) from New Caledonia is very limited. To investigate this topic, we attached satellite-monitored tags to 12 whales off southern New Caledonia. Tag longevity ranged from 1 to 52 days (X = 22.5 days). Tagged whales generally moved to the south or southeast, with several spending time in a previously unknown seamount habitat named Antigonia before resuming movement, generally toward Norfolk Island or New Zealand. However, 1 female with a calf traveled the entire length of the western coast of New Caledonia (~450 km) and then west in the direction of the Chesterfield Reefs, a 19th century American (“Yankee”) whaling ground. None of the New Caledonia whales traveled to or toward eastern Australia, which is broadly consistent with the low rate of interchange observed from photo-identification comparisons between these 2 areas. The connections between New Caledonia and New Zealand, together with the relatively low numbers of whales seen in these places generally, support the idea that whales from these 2 areas constitute a single population that remains small and unrecovered.
Resumo:
A demographic model is developed based on interbirth intervals and is applied to estimate the population growth rate of humpback whales (Megaptera novaeangliae) in the Gulf of Maine. Fecundity rates in this model are based on the probabilities of giving birth at time t after a previous birth and on the probabilities of giving birth first at age x. Maximum likelihood methods are used to estimate these probabilities using sighting data collected for individually identified whales. Female survival rates are estimated from these same sighting data using a modified Jolly–Seber method. The youngest age at first parturition is 5 yr, the estimated mean birth interval is 2.38 yr (SE = 0.10 yr), the estimated noncalf survival rate is 0.960 (SE = 0.008), and the estimated calf survival rate is 0.875 (SE = 0.047). The population growth rate (l) is estimated to be 1.065; its standard error is estimated as 0.012 using a Monte Carlo approach, which simulated sampling from a hypothetical population of whales. The simulation is also used to investigate the bias in estimating birth intervals by previous methods. The approach developed here is applicable to studies of other populations for which individual interbirth intervals can be measured.
Resumo:
Killer whale predation on belugas in Cook Inlet, Alaska, has become a concern since the decline of these belugas was documented during the 1990s. Accordingly, killer whale sightings were compiled from systematic surveys, observer databases, and anecdotal accounts. Killer whales have been relatively common in lower Cook Inlet (at least 100 sightings from 1975 to 2002), but in the upper Inlet, north of Kalgin Island, sightings were infrequent (18 in 27 yr), especially prior to the 1990s. Beach cast beluga carcasses with teeth marks and missing flesh also provided evidence of killer whale predation. Most observed killer whale/beluga interactions were in the upper Inlet. During 11 of 15 observed interactions, belugas were obviously injured or killed, either through direct attacks or indirectly as a result of stranding. Assuming at least one beluga mortality occurred during the other four encounters, we can account for 21 belugas killed between 1985 and 2002. This would suggest a minimum estimate of roughly l/yr and does not include at least three instances where beluga calves accompanied an adult that was attacked.
Resumo:
Between 1991 and 1993, Alaska harbor porpoise (Phocoena phocoena) abundance was investigated during aerial surveys throughout much of the coastal and offshore waters from Bristol Bay in the eastern Bering Sea to Dixon Entrance in Southeast Alaska. Line-transect methodology was used, and only those observations made during optimal conditions were analyzed. Survey data indicated densities of 4.48 groups/100 km2, or approximately 3,531 harbor porpoises (95% C.I. 2,206-5,651) in Bristol Bay and 0.54 groups/100 km2, or 136 harbor porpoises (95% C.I. 11-1,645) for Cook Inlet. Efforts off Kodiak Island resulted in densities of 1.85 groups/100 km2, or an abundance estimate of 740 (95% C.I. 259-2,115). Surveys off the south side of the Alaska Peninsula found densities of 2.03 groups/100 km2 and an abundance estimate of 551 (95% C.I. 423-719). Surveys of offshore waters from Prince William Sound to Dixon Entrance yielded densities of 4.02 groups/100 km’ and an abundance estimate of 3,982 (95% C.I. 2,567-6,177). Combining all years and areas yielded an uncorrected density estimate of 3.82 porpoises per 100 km2, resulting in an abundance estimate of 8,940 porpoises (CV = 13.8%) with a 95% confidence interval of 6,746-11,848. Using correction factors from other studies to adjust for animals missed by observers, the total number of Alaska harbor porpoises is probably three times this number.
Resumo:
The known summer feeding range of the North Pacific humpback whale (Megaptera novaeangliae) extends from California, along the coasts of Oregon, Washington, and Alaska, into the Bering Sea, along the Aleutian Islands, the Sea of Okhotsk (Tomilin 1957), and to northern Japan (Rice 1977). In feeding areas of the northeastern Pacific Ocean, humpback whale photoidentification research has been concentrated off California (Calambokidis et al. 1993), southeastern Alaska (Darling and McSweeney 1985, Baker et al. 1986, 1992; Perry et al. 1990), Prince William Sound in Alaska (von Ziegesar 1992), the Oregon and Washington coasts (Calambokidis et al. 1993), and British Columbia (Darling and McSweeney 1985; Graerne Ellis, unpublished data). Results of these photoidentification studies have documented that individual whales tend to return to the same general areas in subsequent years (Darling and McSweeney 1985, Baker et al. 1986, Calambokidis et a(. 1996, von Ziegesar et al. 1994).
Resumo:
In late August 1991 scientists at the National Oceanic and Atmospheric Administration’s (NOAA) National Marine Mammal Laboratory (NMML) and Pacific Marine Environmental Laboratory (PMEL) began a pilot study to investigate the capability of hydrophones from the US. Navy’s fixed array system to detect large whales in the North Pacific by passive reception of their calls. PMEL had previously established a direct data link from five bottom-mounted arrays of the Navy SOSUS (Sound Surveillance System), via the Naval Oceanographic Processing Facility (NOPF) at Whidbey Island, Washington, to study low-level seafloor seismicity (Fox et al. 1994). PMEL subsequently provided NMML tapes of SOSUS hydrophone data from which whale calls were analyzed. As in an analogous study conducted in the North Atlantic (Nishimura and Conlon 1994, Clark 1995, Mellinger and Clark 1995), calls attributable to whales were received at each SOSUS site at rates that varied seasonally (Anonymous 1996).
Resumo:
Environmental data are spatial, temporal, and often come with many zeros. In this paper, we included space–time random effects in zero-inflated Poisson (ZIP) and ‘hurdle’ models to investigate haulout patterns of harbor seals on glacial ice. The data consisted of counts, for 18 dates on a lattice grid of samples, of harbor seals hauled out on glacial ice in Disenchantment Bay, near Yakutat, Alaska. A hurdle model is similar to a ZIP model except it does not mix zeros from the binary and count processes. Both models can be used for zero-inflated data, and we compared space–time ZIP and hurdle models in a Bayesian hierarchical model. Space–time ZIP and hurdle models were constructed by using spatial conditional autoregressive (CAR) models and temporal first-order autoregressive (AR(1)) models as random effects in ZIP and hurdle regression models. We created maps of smoothed predictions for harbor seal counts based on ice density, other covariates, and spatio-temporal random effects. For both models predictions around the edges appeared to be positively biased. The linex loss function is an asymmetric loss function that penalizes overprediction more than underprediction, and we used it to correct for prediction bias to get the best map for space–time ZIP and hurdle models.
Resumo:
Classical sampling methods can be used to estimate the mean of a finite or infinite population. Block kriging also estimates the mean, but of an infinite population in a continuous spatial domain. In this paper, I consider a finite population version of block kriging (FPBK) for plot-based sampling. The data are assumed to come from a spatial stochastic process. Minimizing mean-squared-prediction errors yields best linear unbiased predictions that are a finite population version of block kriging. FPBK has versions comparable to simple random sampling and stratified sampling, and includes the general linear model. This method has been tested for several years for moose surveys in Alaska, and an example is given where results are compared to stratified random sampling. In general, assuming a spatial model gives three main advantages over classical sampling: (1) FPBK is usually more precise than simple or stratified random sampling, (2) FPBK allows small area estimation, and (3) FPBK allows nonrandom sampling designs.
Resumo:
In response to the increasing global demand for energy, oil exploration and development are expanding into frontier areas of the Arctic, where slow-growing tundra vegetation and the underlying permafrost soils are very sensitive to disturbance. The creation of vehicle trails on the tundra from seismic exploration for oil has accelerated in the past decade, and the cumulative impact represents a geographic footprint that covers a greater extent of Alaska’s North Slope tundra than all other direct human impacts combined. Seismic exploration for oil and gas was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, USA, in the winters of 1984 and 1985. This study documents recovery of vegetation and permafrost soils over a two-decade period after vehicle traffic on snow-covered tundra. Paired permanent vegetation plots (disturbed vs. reference) were monitored six times from 1984 to 2002. Data were collected on percent vegetative cover by plant species and on soil and ground ice characteristics. We developed Bayesian hierarchical models, with temporally and spatially autocorrelated errors, to analyze the effects of vegetation type and initial disturbance levels on recovery patterns of the different plant growth forms as well as soil thaw depth. Plant community composition was altered on the trails by species-specific responses to initial disturbance and subsequent changes in substrate. Long-term changes included increased cover of graminoids and decreased cover of evergreen shrubs and mosses. Trails with low levels of initial disturbance usually improved well over time, whereas those with medium to high levels of initial disturbance recovered slowly. Trails on ice-poor, gravel substrates of riparian areas recovered better than those on ice-rich loamy soils of the uplands, even after severe initial damage. Recovery to pre-disturbance communities was not possible where trail subsidence occurred due to thawing of ground ice. Previous studies of disturbance from winter seismic vehicles in the Arctic predicted short-term and mostly aesthetic impacts, but we found that severe impacts to tundra vegetation persisted for two decades after disturbance under some conditions. We recommend management approaches that should be used to prevent persistent tundra damage.