1000 resultados para FUT2 gene
Resumo:
Origination of new genes is an important mechanism generating genetic novelties during the evolution of an organism. Processes of creating new genes using preexisting genes as the raw materials are well characterized, such as exon shuffling, gene duplicat
Resumo:
Previous studies of repetitive elements (REs) have implicated a mechanistic role in generating new chimerical genes. Such examples are consistent with the classic model for exon shuffling, which relies on non-homologous recombination. However, recent data
Resumo:
Recent transcription profiling studies have revealed an unexpectedly large proportion of antisense transcripts in eukaryotic genomes. These antisense genes seem to regulate gene expression by interacting with sense genes. Previous studies have focused on the non-coding antisense genes, but the possible regulatory role of the antisense protein is poorly understood. In this study, we found that a protein encoded by the antisense gene ADF1 acts as a transcription suppressor, regulating the expression of sense gene MDF1 in Saccharomyces cerevisiae. Based on the evolutionary, genetic, cytological and biochemical evidence, we show that the protein-coding sense gene MDF1 most likely originated de novo from a previously non-coding sequence and can significantly suppress the mating efficiency of baker's yeast in rich medium by binding MAT alpha 2 and thus promote vegetative growth. These results shed new light on several important issues, including a new sense-antisense interaction mechanism, the de novo origination of a functional gene, and the regulation of yeast mating pathway.
Resumo:
Analyses of the mitochondrial cytochrome b gene (1140 bp) showed that Dremomys lokriah, D. pernyi, D. pyrrhomerus, D. rufigenis and D. gularis all are separate species. Dremomys pyrrhomerus showed 8.5% sequence variation from D. rufigenis, and the level o
Resumo:
Gaining insight into the mechanisms of chemoreception in aphids is of primary importance for both integrative studies on the evolution of host plant specialization and applied research in pest control management because aphids rely on their sense of smell
Resumo:
The chromosomes 1, Y-1, Y-2 of Muntjac munticus vaginalis were isolated by fluorescence activated chromosome sorting and amplified by degenerate oligonucleotide primed-polymerase chain reaction ( DOP-PCR). A primer pair within human Sry HMG box was design
Resumo:
In plants and less-advanced animal species, such as C.elegans, introduction of exogenous double-stranded RNA (dsRNA) into cells would trigger degradation of the mRNA with homologous sequence and interfere with the endogenous gene expression. It might represent an ancient anti-virus response which could prevent the mutation in the genome that was caused by virus infection or mobile DNA elements insertion. This phenomenon was named RNA interference, or RNAi. In this study, RNAi was used to investigate the function of basonuclin gene during oogenesis. Microinjection of dsRNA directed towards basonuclin into mouse germinal-vesicle-intact (GV) oocytes brought down the abundance of the cognate mRNA effectively in a time- and concentration-dependent manner. This reduction effect was sequence-specific and showed no negative effect on other non-homologous gene expression in oocytes, which indicated that dsRNA can recognize and cause the degradation of the transcriptional products of endogenous basonuclin gene in a sequence-specific manner. Immunofluorescence results showed that RNAi could reduce the concentration of basonuclin protein to some extent, but the effect was less efficient than the dsRNA targeting towards tPA and cMos which was also expressed in oocytes. This result might be due to the long half life of basonuclin protein in oocytes and the short reaction time which was posed by the limited life span of GV oocytes cultured in vitro. In summary, dsRNA could inhibit the expression of the cognate gene in oocytes at both mRNA and protein levels. The effect was similar to Knock-out technique which was based on homologous recombination. Furthermore, hairpin-style dsRNA targeting basonuclin gene could be produced by transcription from a recombinant plasmid and worked efficiently to deplete the cognate mRNA in oocytes. This finding offered a new way to study the function of basonuclin in the early stage of oogenesis by infection of primordial oocytes with the plasmid expressing hairpin-style basonuclin dsRNA.
Resumo:
测定了4个种(红蹼树蛙、黑蹼树蛙、白斑小树蛙和红吸盘小树蛙)共11个种群的16S rRNA基因片段.双斑树蛙、马来棱皮树蛙、越南棱皮树蛙以及日本溪树蛙的同源序列通过GenBank检索获得.去除所有插入、缺失及模糊位点后,比对序列长度为500 bp,其中变异位点115个,简约信息位点92个.以日本溪树蛙为外群,运用Bayesian法、MP法和ML法构建了系统发育树.结果表明红蹼树蛙和白斑小树蛙在种级水平上均不是单系.红蹼树蛙海南种群与双斑树蛙亲缘关系更近,并且来自云南不同地理种群的红蹼树蛙可以分为两大支系;越南棱皮树蛙与红吸盘小树蛙聚为一支,马来棱皮树蛙嵌套在白斑小树蛙不同地理种群中.进而认为白斑小树蛙是马来棱皮树蛙的同物异名,建议将红吸盘小树蛙并入棱皮树蛙属.
Resumo:
Neuregulin-1 (Nrg-1)(1) gene has been considered as a schizophrenia susceptibility gene. In order to observe the association of Nrg-1 gene with schizophrenia, the study was designed to investigate the effect of anti-psychotic treatment on the Nrg-1 mRNA e
Resumo:
Objective To confirm the genetic relation between Giardia lamblia (G. lamblia) isolates from different geographic regions of China and other countries. Methods Genomic DNA were extracted from the trophozoites or cysts of Giardia lamblia. The triose phosphate isomerase (tim) gene was amplified using polymerase chain reaction (PCR) technique. PCR products were digested with endonuclease and sequenced. The data of sequencing were analyzed with the DNAstar software and compared with that of the isolates acquired from GenBank. Results Of nine isolates of Giardia lamblia from China (C1, C2, CH2 and CH3), Cambodia (CAM), Australia (A1 and A2) and America (BP and CDC), respectively, 3 (A1, A2 and CAM) fit into Group 1 (WB), 2 (CH2 and CH3) into Group 2, and 4 (C1, C2, BP and CDC) into Group 3 (GS). The results confirmed the genetic relatedness of G. lamblia isolates from all over the world. Conclusion Genotyping isolates of G. Lamblia provides important information for establishing the phylogenetic relationship or for the epidemiological evaluation of the spreading of this organism.
Resumo:
The genes encoding type II DNA topoisomerases were investigated in Giardia lamblia genome, and a type IIA gene, GlTop 2 was identified. It is a single copy gene with a 4476 by long ORF without intron. The deduced amino acid sequence shows strong homology to eukaryotic DNA Top 2. However, some distortions were found, such as six insertions in the ATPase domain and the central domain, a similar to 100 as longer central domain; a similar to 200 as shorter C-terminal domain containing rich charged residues. These features revealed by comparing with Top 2 of the host, human, might be helpful in exploiting drug selectivity for antigiardial therapy. Phylogenetic analysis of eukaryotic enzymes showed that kinetoplastids, plants, fungi, and animals were monophyletic groups, and the animal and fungi lineages shared a more recent common ancestor than either did with the plant lineage; microsporidia grouped with fungi. However, unlike many previous phylogenetic analyses, the "amitochondriate" G. lamblia was not the earliest branch but diverged after mitochondriate kinetoplastids in our trees. Both the finding of typical eukaryotic type IIA topoisomerase and the phylogenetic analysis suggest G. lamblia is not possibly as primitive as was regarded before and might diverge after the acquisition of mitochondria. This is consistent with the recent discovery of mitochondrial remnant organelles in G. lamblia.
Resumo:
Giaridia lamblia was long considered to be one of the most primitive eukaryotes and to lie close to the transition between prokaryotes and eukaryotes, but several supporting features, such as lack of mitochondrion and Golgi, have been challenged recently. It was also reported previously that G. lamblia lacked nucleolus, which is the site of pre-rRNA processing and ribosomal assembling in the other eukaryotic cells. Here, we report the identification of the yeast homolog gene, krr1, in the anucleolate eukaryote, G. lamblia. The krr1 gene, encoding one of the pre-rRNA processing proteins in yeast, is actively transcribed in G. lamblia. The deduced protein sequence of G. lamblia krr1 is highly similar to yeast KRR1p that contains a single-KH domain. Our database searches indicated that krr1 genes actually present in diverse eukaryotes and also seem to present in Archaea. However, only the eukaryotic homologs, including that of G. lamblia, have the single-KH domain, which contains the conserved motif KR(K)R. Fibrillarin, another important pre-rRNA processing protein has also been identified previously in G. lamblia. Moreover, our database search shows that nearly half of the other nucleolus-localized protein genes of eukaryotic cells also have their homologs in Giardia. Therefore, we suggest that a common mechanism of pre-RNA processing may operate in the anucleolate eukaryote G. lamblia and in the other eukaryotes and that like the case of "lack of mitochondrion," "lack of nucleolus" may not be a primitive feature, but a secondarily evolutionary condition of the parasite.
Resumo:
Background: Giardia are a group of widespread intestinal protozoan parasites in a number of vertebrates. Much evidence from G. lamblia indicated they might be the most primitive extant eukaryotes. When and how such a group of the earliest branching unicellular eukaryotes developed the ability to successfully parasitize the latest branching higher eukaryotes (vertebrates) is an intriguing question. Gene duplication has long been thought to be the most common mechanism in the production of primary resources for the origin of evolutionary novelties. In order to parse the evolutionary trajectory of Giardia parasitic lifestyle, here we carried out a genome-wide analysis about gene duplication patterns in G. lamblia. Results: Although genomic comparison showed that in G. lamblia the contents of many fundamental biologic pathways are simplified and the whole genome is very compact, in our study 40% of its genes were identified as duplicated genes. Evolutionary distance analyses of these duplicated genes indicated two rounds of large scale duplication events had occurred in G. lamblia genome. Functional annotation of them further showed that the majority of recent duplicated genes are VSPs (Variant-specific Surface Proteins), which are essential for the successful parasitic life of Giardia in hosts. Based on evolutionary comparison with their hosts, it was found that the rapid expansion of VSPs in G. lamblia is consistent with the evolutionary radiation of placental mammals. Conclusions: Based on the genome-wide analysis of duplicated genes in G. lamblia, we found that gene duplication was essential for the origin and evolution of Giardia parasitic lifestyle. The recent expansion of VSPs uniquely occurring in G. lamblia is consistent with the increment of its hosts. Therefore we proposed a hypothesis that the increment of Giradia hosts might be the driving force for the rapid expansion of VSPs.
Resumo:
Melanocortin 1 receptor (MC1R) gene plays a key role in determining coat color in several species, including the cattle. However, up to now there is no report regarding the MC1R gene and the potential association of its mutations with coat colors in yak (
Resumo:
Background: The aim of this study is to screen single nucleotide polymorphisms (SNP) of chicken Calpain3 (CAPN3) gene and to analyze the potential association between CAPN3 gene polymorphisms and carcass traits in chickens. We screened CAPN3 single nucleo