963 resultados para FUNCTIONAL MAGNETIC RESONANCE IMAGING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

THE PURPOSE OF THIS ARTICLE is two-fold, first to provide a general overview of two of the main cognitive neuroscientific techniques available, specifically functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS); and secondly to apply these techniques to elaborate a discussion of an aspect of higher level vision, namely implied motion, that is the perception of movement from a static image.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the absence of external stimuli, the mammalian brain continues to display a rich variety of spontaneous activity. Such activity is often highly stereotypical, is invariably rhythmic, and can occur with periodicities ranging from a few milliseconds to several minutes. Recently, there has been a particular resurgence of interest in fluctuations in brain activity occurring at <0.1 Hz, commonly referred to as very slow or infraslow oscillations (ISOs). Whilst this is primarily due to the emergence of functional magnetic resonance imaging (fMRI) as a technique which has revolutionized the study of human brain dynamics, it is also a consequence of the application of full band electroencephalography (fbEEG). Despite these technical advances, the precise mechanisms which lead to ISOs in the brain remain unclear. In a host of animal studies, one brain region that consistently shows oscillations at <0.1 Hz is the thalamus. Importantly, similar oscillations can also be observed in slices of isolated thalamic relay nuclei maintained in vitro. Here, we discuss the nature and mechanisms of these oscillations, paying particular attention to a potential role for astrocytes in their genesis. We also highlight the relationship between this activity and ongoing local network oscillations in the alpha (a; ~8-13 Hz) band, drawing clear parallels with observations made in vivo. Last, we consider the relevance of these thalamic ISOs to the pathological activity that occurs in certain types of epilepsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider how functional Magnetic Resonance Imaging (fMRI) has been used to study cortical connectivity in autism and autistic spectrum disorders (ASD). We discuss those studies that have contributed to the evidence supporting a model of disordered cortical connectivity in autism and (ASD), with a focusing emphasis on the application to research into the underconnectivity model. We note that the analytical techniques employed are limited and do not allow interpretation in terms of effective, or directional connectivity, nor do they provide information about the temporal or spectral characteristics of the functional networks being studied. We highlight how currently the features of neural generators that are being assessed by functional connectivity in fMRI are unclear. In addition, we note the importance in clinical studies of considering the consequences of task choice for the nature of the imaging data that can be collected and also of individual differences in participant state and trait characteristics for the accurate interpretation of imaging data. We discuss how alternative techniques such as EEG/MEG may address the limitations of fMRI in assessing brain connectivity, and additionally consider the potential of multimodal approaches. We conclude that fMRI has made significant contributions towards our understanding of the brain in terms of neural systems but that the conclusions drawn from its application in the sphere of autism research need to be approached with caution. It is important in research of this kind that we are aware of the need to examine the methodological and analytical techniques closely when applying findings in clinical populations, not only when they are used to support the development of theoretical models but also to inform diagnostic or treatment decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual mental imagery is a complex process that may be influenced by the content of mental images. Neuropsychological evidence from patients with hemineglect suggests that in the imagery domain environments and objects may be represented separately and may be selectively affected by brain lesions. In the present study, we used functional magnetic resonance imaging (fMRI) to assess the possibility of neural segregation among mental images depicting parts of an object, of an environment (imagined from a first-person perspective), and of a geographical map, using both a mass univariate and a multivariate approach. Data show that different brain areas are involved in different types of mental images. Imagining an environment relies mainly on regions known to be involved in navigational skills, such as the retrosplenial complex and parahippocampal gyrus, whereas imagining a geographical map mainly requires activation of the left angular gyrus, known to be involved in the representation of categorical relations. Imagining a familiar object mainly requires activation of parietal areas involved in visual space analysis in both the imagery and the perceptual domain. We also found that the pattern of activity in most of these areas specifically codes for the spatial arrangement of the parts of the mental image. Our results clearly demonstrate a functional neural segregation for different contents of mental images and suggest that visuospatial information is coded by different patterns of activity in brain areas involved in visual mental imagery. Hum Brain Mapp 36:945-958, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pain is a ubiquitous yet highly variable experience. The psychophysiological and genetic factors responsible for this variability remain unresolved. We hypothesised the existence of distinct human pain clusters (PCs) composed of distinct psychophysiological and genetic profiles coupled with differences in the perception and the brain processing of pain. We studied 120 healthy subjects in whom the baseline personality and anxiety traits and the serotonin transporter-linked polymorphic region (5-HTTLPR) genotype were measured. Real-time autonomic nervous system parameters and serum cortisol were measured at baseline and after standardised visceral and somatic pain stimuli. Brain processing reactions to visceral pain were studied in 29 subjects using functional magnetic resonance imaging (fMRI). The reproducibility of the psychophysiological responses to pain was assessed at 1 year. In group analysis, visceral and somatic pain caused an expected increase in sympathetic and cortisol responses and activated the pain matrix according to fMRI studies. However, using cluster analysis, we found 2 reproducible PCs: at baseline, PC1 had higher neuroticism/anxiety scores (P ≤ 0.01); greater sympathetic tone (P < 0.05); and higher cortisol levels (P ≤ 0.001). During pain, less stimulus was tolerated (P ≤ 0.01), and there was an increase in parasympathetic tone (P ≤ 0.05). The 5-HTTLPR short allele was over-represented (P ≤ 0.005). PC2 had the converse profile at baseline and during pain. Brain activity differed (P ≤ 0.001); greater activity occurred in the left frontal cortex in PC1, whereas PC2 showed greater activity in the right medial/frontal cortex and right anterior insula. In health, 2 distinct reproducible PCs exist in humans. In the future, PC characterization may help to identify subjects at risk for developing chronic pain and may reduce variability in brain imaging studies. © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emotional liability and mood dysregulation characterize bipolar disorder (BD), yet no study has examined effective connectivity between parahippocampal gyrus and prefrontal cortical regions in ventromedial and dorsal/lateral neural systems subserving mood regulation in BD. Participants comprised 46 individuals (age range: 18-56 years): 21 with a DSM-IV diagnosis of BD, type I currently remitted; and 25 age- and gender-matched healthy controls (HC). Participants performed an event-related functional magnetic resonance imaging paradigm, viewing mild and intense happy and neutral faces. We employed dynamic causal modeling (DCM) to identify significant alterations in effective connectivity between BD and HC. Bayes model selection was used to determine the best model. The right parahippocampal gyrus (PHG) and right subgenual cingulate gyrus (sgCG) were included as representative regions of the ventromedial neural system. The right dorsolateral prefrontal cortex (DLPFC) region was included as representative of the dorsal/lateral neural system. Right PHG-sgCG effective connectivity was significantly greater in BD than HC, reflecting more rapid, forward PHG-sgCG signaling in BD than HC. There was no between-group difference in sgCG-DLPFC effective connectivity. In BD, abnormally increased right PHG-sgCG effective connectivity and reduced right PHG activity to emotional stimuli suggest a dysfunctional ventromedial neural system implicated in early stimulus appraisal, encoding and automatic regulation of emotion that may represent a pathophysiological functional neural mechanism for mood dysregulation in BD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives - Impaired attentional control and behavioral control are implicated in adult suicidal behavior. Little is known about the functional integrity of neural circuitry supporting these processes in suicidal behavior in adolescence. Method - Functional magnetic resonance imaging was used in 15 adolescent suicide attempters with a history of major depressive disorder (ATTs), 15 adolescents with a history of depressive disorder but no suicide attempt (NATs), and 14 healthy controls (HCs) during the performance of a well-validated go-no-go response inhibition and motor control task that measures attentional and behavioral control and has been shown to activate prefrontal, anterior cingulate, and parietal cortical circuitries. Questionnaires assessed symptoms and standardized interviews characterized suicide attempts. Results - A 3 group by 2 condition (go-no-go response inhibition versus go motor control blocks) block-design whole-brain analysis (p < .05, corrected) showed that NATs showed greater activity than ATTs in the right anterior cingulate gyrus (p = .008), and that NATs, but not ATTs, showed significantly greater activity than HCs in the left insula (p = .004) to go-no-go response inhibition blocks. Conclusions - Although ATTs did not show differential patterns of neural activity from HCs during the go-no-go response inhibition blocks, ATTs and NATs showed differential activation of the right anterior cingulate gyrus during response inhibition. These findings indicate that suicide attempts during adolescence are not associated with abnormal activity in response inhibition neural circuitry. The differential patterns of activity in response inhibition neural circuitry in ATTs and NATs, however, suggest different neural mechanisms for suicide attempt versus major depressive disorder in general in adolescence that should be a focus of further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroimaging studies have consistently shown that working memory (WM) tasks engage a distributed neural network that primarily includes the dorsolateral prefrontal cortex, the parietal cortex, and the anterior cingulate cortex. The current challenge is to provide a mechanistic account of the changes observed in regional activity. To achieve this, we characterized neuroplastic responses in effective connectivity between these regions at increasing WM loads using dynamic causal modeling of functional magnetic resonance imaging data obtained from healthy individuals during a verbal n-back task. Our data demonstrate that increasing memory load was associated with (a) right-hemisphere dominance, (b) increasing forward (i.e., posterior to anterior) effective connectivity within the WM network, and (c) reduction in individual variability in WM network architecture resulting in the right-hemisphere forward model reaching an exceedance probability of 99% in the most demanding condition. Our results provide direct empirical support that task difficulty, in our case WM load, is a significant moderator of short-term plasticity, complementing existing theories of task-related reduction in variability in neural networks. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An expanding corpus of research details the relationship between functional magnetic resonance imaging (fMRI) measures and neuronal network oscillations. Typically, integratedelectroencephalography(EEG) and fMRI,orparallel magnetoencephalography (MEG) and fMRI are used to draw inference about the consanguinity of BOLD and electrical measurements. However, there is a relative dearth of information about the relationship between E/MEG and the focal networks from which these signals emanate. Consequently, the genesis and composition of E/MEG oscillations requires further clarification. Here we aim to contribute to understanding through a series of parallel measurements of primary motor cortex (M1) oscillations, using human MEG and in-vitro rodent local field potentials. We compare spontaneous activity in the ~10Hz mu and 15-30Hz beta frequency ranges and compare MEG signals with independent and integrated layers III and V(LIII/LV) from in vitro recordings. We explore the mechanisms of oscillatory generation, using specific pharmacological modulation with the GABA-A alpha-1 subunit modulator zolpidem. Finally, to determine the contribution of cortico-cortical connectivity, we recorded in-vitro M1, during an incision to sever lateral connections between M1 and S1 cortices. We demonstrate that frequency distribution of MEG signals appear have closer statistically similarity with signals from integrated rather than independent LIII/LV laminae. GABAergic modulation in both modalities elicited comparable changes in the power of the beta band. Finally, cortico-cortical connectivity in sensorimotor cortex (SMC) appears to directly influence the power of the mu rhythm in LIII. These findings suggest that the MEG signal is an amalgam of outputs from LIII and LV, that multiple frequencies can arise from the same cortical area and that in vitro and MEG M1 oscillations are driven by comparable mechanisms. Finally, corticocortical connectivity is reflected in the power of the SMC mu rhythm. © 2013 Ronnqvist, Mcallister, Woodhall, Stanford and Hall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Genetic, neuroimaging, and molecular neurobiological evidence support the hypothesis that the disconnectivity syndrome in schizophrenia (SZ) could arise from failures of saltatory conduction and abnormalities at the nodes of Ranvier (NOR) interface where myelin and axons interact. Objective: To identify abnormalities in the expression of oligodendroglial genes and proteins that participate in the formation, maintenance, and integrity of the NOR in SZ. Design: The messenger RNA (mRNA) expression levels of multiple NOR genes were quantified in 2 independent postmortem brain cohorts of individuals with SZ, and generalizability to protein expression was confirmed. The effect of the ANK3 genotype on the mRNA expression level was tested in postmortem human brain. Case-control analysis tested the association of the ANK3 genotype with SZ. The ANK3 genotype's influence on cognitive task performance and functional magnetic resonance imaging activation was tested in 2 independent cohorts of healthy individuals. Setting: Research hospital. Patients: Postmortem samples from patients with SZ and healthy controls were used for the brain expression study (n=46) and the case-control analysis (n=272). Healthy white men and women participated in the cognitive (n=513) and neuroimaging (n=52) studies. Main Outcome Measures: The mRNA and protein levels in postmortem brain samples, genetic association with schizophrenia, cognitive performance, and blood oxygenation level-dependent functional magnetic resonance imaging. Results: The mRNA expression of multiple NOR genes was decreased in schizophrenia. The ANK3 rs9804190 C allele was associated with lower ANK3 mRNA expression levels, higher risk for SZ in the case-control cohort, and poorer working memory and executive function performance and increased prefrontal activation during a working memory task in healthy individuals. Conclusions: These results point to abnormalities in the expression of genes and protein associated with the integrity of the NOR and suggest them as substrates for the disconnectivity syndrome in SZ. The association of ANK3 with lower brain mRNA expression levels implicates a molecular mechanism for its genetic, clinical, and cognitive associations with SZ. ©2012 American Medical Association. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with Bipolar Disorder (BD) perform poorly on tasks of selective attention and inhibitory control. Although similar behavioural deficits have been noted in their relatives, it is yet unclear whether they reflect dysfunction in the same neural circuits. We used functional magnetic resonance imaging and the Stroop Colour Word Task to compare task related neural activity between 39 euthymic BD patients, 39 of their first-degree relatives (25 with no Axis I disorders and 14 with Major Depressive Disorder) and 48 healthy controls. Compared to controls, all individuals with familial predisposition to BD, irrespective of diagnosis, showed similar reductions in neural responsiveness in regions involved in selective attention within the posterior and inferior parietal lobules. In contrast, hypoactivation within fronto-striatal regions, implicated in inhibitory control, was observed only in BD patients and MDD relatives. Although striatal deficits were comparable between BD patients and their MDD relatives, right ventrolateral prefrontal dysfunction was uniquely associated with BD. Our findings suggest that while reduced parietal engagement relates to genetic risk, fronto-striatal dysfunction reflects processes underpinning disease expression for mood disorders. © 2011 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gender differences have been well established in verbal and spatial abilities but few studies have examined if these differences also extend into the domain of working memory in terms of behavioural differences and brain activation. The conclusions that can be drawn from these studies are not clear cut but suggest that even though gender differences might not be apparent from behavioural measures, the underlying neural substrate associated with working memory might be different in men and women. Previous research suggests activation in a network of frontal and parietal regions during working memory tasks. This study aimed to investigate gender differences in patterns of brain activation during a verbal version of the N-back working memory task, which incorporates the effects of increased demands on working memory. A total of 50 healthy subjects, aged 18 to 58 years, that were equally split by gender were recruited matched for age, levels of education and ethnicity. All subjects underwent functional magnetic resonance imaging. We found that men and women performed equally well in terms of accuracy and response times, while using similar brain regions to the same degree. Our observations indicate that verbal working memory is not affected by gender at the behavioural or neural level, and support the findings of a recent meta-analysis by Hyde ([2005]: Sex Roles 53:717-725) that gender differences are generally smaller than intra-gender differences in many cognitive domains. © 2009 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IMPORTANCE Genome-wide association studies (GWASs) indicate that single-nucleotide polymorphisms in the CACNA1C and ANK3 genes increase the risk for bipolar disorder (BD). The genes influence neuronal firing by modulating calcium and sodium channel functions, respectively. Both genes modulate ?-aminobutyric acid-transmitting interneuron function and can thus affect brain regional activation and interregional connectivity. OBJECTIVE To determine whether the genetic risk for BD associated with 2 GWAS-supported risk single-nucleotide polymorphisms at CACNA1C rs1006737 and ANK3 rs10994336 is mediated through changes in regional activation and interregional connectivity of the facial affect-processing network. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional functional magnetic resonance imaging study at a research institute of 41 euthymic patients with BD and 46 healthy participants, all of British white descent. MAIN OUTCOMES AND MEASURES Blood oxygen level-dependent signal and effective connectivity measures during the facial affect-processing task. RESULTS In healthy carriers, both genetic risk variants were independently associated with increased regional engagement throughout the facial affect-processing network and increased effective connectivity between the visual and ventral prefrontal cortical regions. In contrast, BD carriers of either genetic risk variant exhibited pronounced reduction in ventral prefrontal cortical activation and visual-prefrontal effective connectivity. CONCLUSIONS AND RELEVANCE Our data demonstrate that the effect of CACNA1C rs1006737 and ANK3 rs10994336 (or genetic variants in linkage disequilibrium) on the brain converges on the neural circuitry involved in affect processing and provides a mechanism linking BD to genome-wide genetic risk variants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. Emotional dysregulation in bipolar disorder is thought to arise from dysfunction within prefrontal cortical regions involved in cognitive control coupled with increased or aberrant activation within regions engaged in emotional processing. The aim of this study was to determine the common and distinct patterns of functional brain abnormalities during reward and working memory processing in patients with bipolar disorder. Methods. Participants were 36 euthymic bipolar disorder patients and 37 healthy comparison subjects matched for age, sex and IQ. Functional magnetic resonance imaging (fMRI) was conducted during the Iowa Gambling Task (IGT) and the n-back working memory task. Results. During both tasks, patients with bipolar disorder demonstrated a pattern of inefficient engagement within the ventral frontopolar prefrontal cortex with evidence of segregation along the medial-lateral dimension for reward and working memory processing, respectively. Moreover, patients also showed greater activation in the anterior cingulate cortex during the Iowa Gambling Task and in the insula during the n-back task. Conclusions. Our data implicate ventral frontopolar dysfunction as a core abnormality underpinning bipolar disorder and confirm that overactivation in regions involved in emotional arousal is present even in tasks that do not typically engage emotional systems. © 2012 Informa Healthcare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - The Met allele of the catechol-O-methyltransferase (COMT) valine-to-methionine (Val158Met) polymorphism is known to affect dopamine-dependent affective regulation within amygdala-prefrontal cortical (PFC) networks. It is also thought to increase the risk of a number of disorders characterized by affective morbidity including bipolar disorder (BD), major depressive disorder (MDD) and anxiety disorders. The disease risk conferred is small, suggesting that this polymorphism represents a modifier locus. Therefore our aim was to investigate how the COMT Val158Met may contribute to phenotypic variation in clinical diagnosis using sad facial affect processing as a probe for its neural action. Method - We employed functional magnetic resonance imaging to measure activation in the amygdala, ventromedial PFC (vmPFC) and ventrolateral PFC (vlPFC) during sad facial affect processing in family members with BD (n=40), MDD and anxiety disorders (n=22) or no psychiatric diagnosis (n=25) and 50 healthy controls. Results - Irrespective of clinical phenotype, the Val158 allele was associated with greater amygdala activation and the Met allele with greater signal change in the vmPFC and vlPFC. Signal changes in the amygdala and vmPFC were not associated with disease expression. However, in the right vlPFC the Met158 allele was associated with greater activation in all family members with affective morbidity compared with relatives without a psychiatric diagnosis and healthy controls. Conclusions - Our results suggest that the COMT Val158Met polymorphism has a pleiotropic effect within the neural networks subserving emotional processing. Furthermore the Met158 allele further reduces cortical efficiency in the vlPFC in individuals with affective morbidity. © 2010 Cambridge University Press.