953 resultados para Extrathoracic Airway
Resumo:
OBJECTIVE: Multiple organ failure is a common complication of acute circulatory and respiratory failure. We hypothesized that therapeutic interventions used routinely in intensive care can interfere with the perfusion of the gut and the liver, and thereby increase the risk of mismatch between oxygen supply and demand. DESIGN: Prospective, observational study. SETTING: Interdisciplinary intensive care unit (ICU) of a university hospital. PATIENTS: Thirty-six patients on mechanical ventilation with acute respiratory or circulatory failure or severe infection were included. INTERVENTIONS: Insertion of a hepatic venous catheter. MEASUREMENTS AND MAIN RESULTS: Daily nursing procedures were recorded. A decrease of >or=5% in hepatic venous oxygen saturation (Sho2) was considered relevant. Observation time was 64 (29-104) hours (median [interquartile range]). The ICU stay was 11 (8-15) days, and hospital mortality was 35%. The number of periods with procedures/patient was 170 (98-268), the number of procedure-related decreases in Sho2 was 29 (13-41), and the number of decreases in Sho2 unrelated to procedures was 9 (4-19). Accordingly, procedure-related Sho2 decreases occurred 11 (7-17) times per day. Median Sho2 decrease during the procedures was 7 (5-10)%, and median increase in the gradient between mixed and hepatic venous oxygen saturation was 6 (4-9)%. Procedures that caused most Sho2 decreases were airway suctioning, assessment of level of sedation, and changing patients' position. Sho2 decreases were associated with small but significant increases in heart rate and intravascular pressures. Maximal Sequential Organ Failure Assessment scores in the ICU correlated with the number of Sho2 decreases (r: .56; p < 0.001) and with the number of procedure-related Sho2 decreases (r: .60; p < 0.001). CONCLUSIONS: Patients are exposed to repeated episodes of impaired splanchnic perfusion during routine nursing procedures. More research is needed to examine the correlation, if any, between nursing procedures and hepatic venous desaturation.
Resumo:
This study evaluated the response to increasing levels of neurally adjusted ventilatory assist (NAVA), a mode converting electrical activity of the diaphragm (EAdi) into pressure, regulated by a proportionality constant called the NAVA level. Fourteen rabbits were studied during baseline, resistive loading and ramp increases of the NAVA level. EAdi, airway (Paw) and esophageal pressure (Pes), Pes pressure time product (PTPes), breathing pattern, and blood gases were measured. Resistive loading increased PTPes and EAdi. P(a)(CO)(2) increased with high load but not during low load. Increasing NAVA levels increased Paw until a breakpoint where the Paw increase was reduced despite increasing NAVA level. At this breakpoint, Pes, PTPes, EAdi, and P(a)(CO)(2) were similar to baseline. Further increase of the NAVA level reduced Pes, PTPes and EAdi without changes in ventilation. In conclusion, observing the trend in Paw during a ramp increase of the NAVA level allows determination of a level where the inspiratory effort matches unloaded conditions.
Resumo:
The lack of effective therapies for end-stage lung disease validates the need for stem cell-based therapeutic approaches as alternative treatment options. In contrast with exogenous stem cell sources, the use of resident progenitor cells is advantageous considering the fact that the lung milieu is an ideal and familiar environment, thereby promoting the engraftment and differentiation of transplanted cells. Recent studies have shown the presence of multipotent 'mesenchymal stem cells' in the adult lung. The majority of these reports are, however, limited to animal models, and to date, there has been no report of a similar cell population in adult human lung parenchyma. Here, we show the identification of a population of primary human lung parenchyma (pHLP) mesenchymal stromal cells (MSCs) derived from intraoperative normal lung parenchyma biopsies. Surface and intracellular immunophenotyping by flow cytometry revealed that cultures do not contain alveolar type I epithelial cells or Clara cells, and are devoid of the following hematopoietic markers: CD34, CD45 and CXCR4. Cells show an expression pattern of surface antigens characteristic of MSCs, including CD73, CD166, CD105, CD90 and STRO-1. As per bone marrow MSCs, our pHLP cells have the ability to differentiate along the adipogenic, osteogenic and chondrogenic mesodermal lineages when cultured in the appropriate conditions. In addition, when placed in small airway growth media, pHLP cell cultures depict the expression of aquaporin 5 and Clara cell secretory protein, which is identified with that of alveolar type I epithelial cells and Clara cells, respectively, thereby exhibiting the capacity to potentially differentiate into airway epithelial cells. Further investigation of these resident cells may elucidate a therapeutic cell population capable of lung repair and/or regeneration.
Resumo:
Increased levels of NO in exhaled air in association with increased NO synthetase (NOS)2 expression in bronchial epithelial are hallmark features of asthma. It has been suggested that NO contributes to asthma pathogenesis by selective down-regulation of TH1 responses. We demonstrate, however, that NO can reversibly limit in vitro expansion of both human TH1 and TH2 CD4+ T cells. Mechanistically, NO induces cGMP-mediated reversible STAT5 dephosphorylation and therefore interferes with the IL-2R activation cascade. Human bronchial epithelial cells (HBEC) up-regulate NOS2 after stimulation with IFN-gamma secreted by TH1 CD4+ T cells and release NO, which inhibits both TH1 and TH2 cell proliferation. This reversible T cell growth arrest depends on NO because T cell proliferation is completely restored after in vitro blocking of NOS2 on HBEC. HBEC thus drive the effector end of a TH1-controlled feedback loop, which protects airway mucosal tissues at the potential lesional site in asthma from overwhelming CD4+ TH2 (and potentially TH1) responses following allergen exposure. Variations in the efficiency of this feedback loop provides a plausible mechanism to explain why only a subset of atopics sensitized to ubiquitous aeroallergens progress to expression of clinically relevant levels of airways inflammation.
Resumo:
The objective of this study was to examine the association of pharyngeal lymphoid hyperplasia (PLH), recurrent laryngeal neuropathy (RLN), mucus accumulation (MA) score and tracheobronchial secretion neutrophil percentage (TBS-N) with rider-assessed performance in sport horses. Airway endoscopy scores, tracheobronchial secretion cytology, rider-assessed general impression and willingness to perform were investigated in 171 top-level sport horses. Increased MA appears to be associated with poor willingness to perform in sport horses. Older horses had decreased PLH scores and increased TBS-N. Mucus accumulation scores > or =3 were associated with increased odds (mean 9.92; upper and lower 95% confidence intervals: 1.5-64.6) of poor rather than excellent willingness to perform. A TBS-N of 20-50% compared with <20% was associated with decreased odds (median 0.11; upper and lower 95% CI: 0.02-0.66) of poor rather than excellent willingness to perform. In addition, horses with an RLN grade > or =2 had significantly higher odds for giving a poorer general impression and willingness to perform. This finding, however, must be interpreted with caution, since only two horses had significant RLN (grade > or =3).
Resumo:
REASONS FOR PERFORMING STUDY: Airway mucus accumulation is associated with indoor irritant and allergen exposure in horses with recurrent airway obstruction (RAO). Epidermal growth factor receptor (EGFR) and a chloride channel (calcium activated, family member 1; CLCA1) are key signalling molecules involved in mucin gene expression. OBJECTIVES: We hypothesised that exposure to irritants and aeroallergens would lead to increased expression of the mucin gene eqMUC5AC and increased stored mucosubstance in the airways of RAO-affected horses, associated with increased neutrophils and CLCA1 and EGFR mRNA levels. METHODS: We performed quantitative RT-PCR of eqMUC5AC, CLCA1 and EGFR; volume density measurements of intraepithelial mucosubstances; and cytological differentiation of intraluminal inflammatory cells in small cartilaginous airways from cranial left and right and caudal left and right lung lobes of 5 clinically healthy and 5 RAO-affected horses that had been exposed to indoor stable environment for 5 days before euthanasia. RESULTS: Neutrophils were increased in RAO-affected horses compared to clinically healthy controls. EqMUC5AC mRNA levels were positively correlated with both CLCA1 and EGFR mRNA levels in RAO-affected horses but only with CLCA1 in controls. The relationship between eqMUC5AC and CLCA1 differed in the 2 groups of horses with RAO-affected animals overexpressing CLCA1 in relation to eqMUC5AC. CONCLUSIONS: These data implicate CLCA1 as a signalling molecule in the expression of eqMUC5AC in horses but also suggest differential regulation by CLCA1 and EGFR between horses with RAO and those with milder degrees of airway inflammation.
Resumo:
The purpose of the present study was to describe normal magnetic resonance (MR) imaging anatomy of the equine larynx and pharynx and to present the optimal protocol, sequences, and possible limitations of this examination technique. Using a 0.3 T unit, the laryngeal and pharyngeal regions was imaged in two horses. The protocol consisted of sagittal and transverse T2-weighted (T2w) fast spin echo, transverse T1-weighted (T1w) spin echo, and dorsal high-resolution T1w gradient echo (both pre- and postcontrast enhancement) sequences. Euthanasia was performed at the end of the imaging procedure. Macroscopic anatomy of the cadaver sections were compared with the MR images in transverse, midsagittal, and parasagittal planes. There was good differentiation of anatomic structures, including soft tissues. The laryngeal cartilages, hyoid apparatus, and upper airway muscle groups with their attachments could be clearly identified. However, it was not always possible to delineate individual muscles in each plane. Most useful were both T2w and T1w transverse sequences. Intravenous application of contrast medium was helpful to identify blood vessels. The MR images corresponded with the macroscopic anatomy of cadaver sections.
Resumo:
BACKGROUND Among children with wheeze and recurrent cough there is great variation in clinical presentation and time course of the disease. We previously distinguished 5 phenotypes of wheeze and cough in early childhood by applying latent class analysis to longitudinal data from a population-based cohort (original cohort). OBJECTIVE To validate previously identified phenotypes of childhood cough and wheeze in an independent cohort. METHODS We included 903 children reporting wheeze or recurrent cough from an independent population-based cohort (validation cohort). As in the original cohort, we used latent class analysis to identify phenotypes on the basis of symptoms of wheeze and cough at 2 time points (preschool and school age) and objective measurements of atopy, lung function, and airway responsiveness (school age). Prognostic outcomes (wheeze, bronchodilator use, cough apart from colds) 5 years later were compared across phenotypes. RESULTS When using a 5-phenotype model, the analysis distinguished 3 phenotypes of wheeze and 2 of cough as in the original cohort. Two phenotypes were closely similar in both cohorts: Atopic persistent wheeze (persistent multiple trigger wheeze and chronic cough, atopy and reduced lung function, poor prognosis) and transient viral wheeze (early-onset transient wheeze with viral triggers, favorable prognosis). The other phenotypes differed more between cohorts. These differences might be explained by differences in age at measurements. CONCLUSIONS Applying the same method to 2 different cohorts, we consistently identified 2 phenotypes of wheeze (atopic persistent wheeze, transient viral wheeze), suggesting that these represent distinct disease processes. Differences found in other phenotypes suggest that the age when features are assessed is critical and should be considered carefully when defining phenotypes.
Resumo:
Chronic obstructive pulmonary disease (COPD) is characterized by emphysema and chronic bronchitis and is a leading cause of morbidity and mortality worldwide. Tobacco smoke and deficiency in α1-antitrypsin (AAT) are the most prominent environmental and genetic risk factors, respectively. Yet the pathogenesis of COPD is not completely elucidated. Disease progression appears to include a vicious circle driven by self-perpetuating lung inflammation, endothelial and epithelial cell death, and proteolytic degradation of extracellular matrix proteins. Like AAT, serpinB1 is a potent inhibitor of serine proteases including neutrophil elastase and cathepsin G. Because serpinB1 is expressed in myeloid and lung epithelial cells and is protective during lung infections, we investigated the role of serpinB1 in preventing age-related and cigarette smoke-induced emphysema in mice. Fifteen-month-old mice showed increased lung volume and decreased pulmonary function compared with young adult mice (3 mo old), but no differences were observed between serpinB1-deficient (KO) and wild-type (WT) mice. Chronic exposure to secondhand cigarette smoke resulted in structural emphysematous changes compared with respective control mice, but no difference in lung morphometry was observed between genotypes. Of note, the different pattern of stereological changes induced by age and cigarette smoke suggest distinct mechanisms leading to increased airway volume. Finally, expression of intracellular and extracellular protease inhibitors were differently regulated in lungs of WT and KO mice following smoke exposure; however, activity of proteases was not significantly altered. In conclusion, we showed that, although AAT and serpinB1 are similarly potent inhibitors of neutrophil proteases, serpinB1 deficiency is not associated with more severe emphysema.
Resumo:
A 5-½-month-old female Holstein-Friesian calf was presented with a history of recurring ruminal tympany and poor development. The absence of lung sounds on the right hemithorax suggested a right-sided intrathoracic pathology. Radiography and computed tomography revealed a large thin-walled cavernous lesion with a gas-fluid interface which almost completely filled the right thoracic cavity. Fluid aspirated from the lesion was clear, yellowish and odorless. These findings led to the diagnosis of a bronchogenic cyst. Thoracotomy was performed under general anesthesia. The cyst strongly adhered to the adjacent lung tissue. After removal of the free wall, the adjacent lung tissue was sealed using surgical stapling instruments, and the non-removable part of the wall was curetted and rinsed. The intensive postoperative management included antibiotic therapy, oxygen supplementation and regional lidocaine infusion. Anti-inflammatory drugs were administered for further pain control. The calf recovered well and was released from the clinic on postoperative day 11. Intra- or extrathoracic bronchogenic cysts result from abnormal budding during the embryonic development of the tracheobronchial system. Successful treatment of this calf despite the size of the lesion and the invasive character of the surgical intervention indicates that resection of bronchogenic cysts in cattle may be an option for valuable animals.
Resumo:
BACKGROUND Fractional exhaled nitric oxide (FENO), a non-invasive marker of eosinophilic airway inflammation, is increasingly used for diagnostic and therapeutic decisions in adult and paediatric asthma. Standardized guidelines for the measurement of FENO recommend performing FENO measurements before rather than after bronchial provocation tests. OBJECTIVE To investigate whether FENO levels decrease after a Mannitol dry powder (MDP) challenge in a clinical setting, and whether the extent of the decrease is influenced by number of MDP manoeuvres, baseline FENO, atopy and doctor diagnosed asthma. METHODS Children aged 6-16 years, referred for possible reactive airway disease to a respiratory outpatient clinic, performed an MDP challenge (Aridol®, Pharmaxis, Australia). FENO was measured in doublets immediately before and after the challenge test using the portable NIOX MINO® device (Aerocrine, Stockholm, Sweden). We analysed the data using Kruskal-Wallis rank tests, Wilcoxon signed rank tests and multivariable linear regressions. RESULTS One hundred and seven children completed both tests (mean±SD age 11.5±2.8 years). Overall, median (interquartile range) FENO decreased slightly by -2.5 ppb (-7.0, -0.5), from 18.5 ppb (10.5, 45.5) before the MDP challenge to 16.5 ppb thereafter (8.5, 40.5; p<0.001). In all participants, the change in FENO was smaller than one standard deviation of the baseline mean. The % fall in FENO was smaller in children with less MDP manoeuvres (e.g. higher bronchial responsiveness; p = 0.08) but was not influenced by levels of baseline FENO (p = 0.68), atopy (p = 0.84) or doctor diagnosed asthma (p = 0.93). CONCLUSION MDP challenge test influences FENO values but differences are small and clinically barely relevant.
Resumo:
BACKGROUND: Eosinophilic esophagitis (EoE) is often associated with atopic airway and skin diseases. More than 80% of EoE patients are sensitized to aero- and/or food allergens. Immunoglobulin (Ig)E-mediated immune responses to microbes have been reported to be deleterious in connection with atopic diseases. AIM: The aim of this study was to obtain a comprehensive overview about the sensitization spectrum of adult EoE patients. METHODS: IgE in sera of 35 patients with active EoE were analyzed for reactivity to Candida albicans, as well as to a panel of recombinant and purified natural allergen components, using a microarray. RESULTS: IgE sensitization to Candida albicans was found in 43% of EoE patients. More than 80% of EoE patients were sensitized to aeroallergens and 22% to food-specific allergen components, whereas 69% of the patients exhibited specific IgE to cross-reactive allergens. Among the latter, profilins were identified as most frequent IgE cross-reactive allergen components. Interestingly, dysphagia, the main symptom of adult EoE patients following rice and/or bread ingestion, was associated with sensitization to cross-reactive allergens such as profilins, pathogenesis-related (PR) 10 and lipid transfer proteins (LTP). Intolerance toward meat rarely correlated with sensitization to animal food allergens. CONCLUSION: Candida albicans and cross-reactive plant allergen components, in particular profilins, were identified as frequent sensitizers in adult EoE patients. Specific elimination therapies are suggested to reveal their actual roles in the pathogenesis of EoE.
Resumo:
The aim of the present study was to describe the prevalence of Nicoletella semolina in equine airways and its relationships with cytological evaluation of tracheal wash (TW). Samples were collected in the framework of routine bacteriological diagnostics of equine TW between May 2010 and June 2011. N semolina has been isolated, along with either common pathogens or contaminants, from 19 (1.8%) of the 1,054 TW samples. Median TW neutrophil counts (87.0%) in specimens from N semolina-positive horses were significantly different from those from N semolina-“negative” horses (52.0%). The data presented in this report may suggest considering such bacteria in horses clinically suffering from airway inflammation.
Resumo:
Background Molecular methods based on phylogenetic differences in the 16S rRNA gene are able to characterise the microbiota of the respiratory tract in health and disease. Objectives Our goals were (1) to characterise bacterial communities in lower and upper airways of patients with interstitial lung disease (ILD) and (2) to compare the results with the microbiota of patients with Pneumocystis pneumonia (PCP) and normal controls. Methods We examined the upper and lower respiratory tract of 18 patients with ILD of whom 5, 6, and 7 had idiopathic interstitial pneumonia (IIP), non-IIP and sarcoidosis, respectively. In addition, six immune-compromised patients with PCP and nine healthy subjects were included as controls. Exclusion criteria were recent bacterial/viral respiratory tract infection, HIV-positivity and subjects receiving antibiotic therapy. Bronchoalveolar lavage fluid and oropharyngeal swabs were simultaneously collected, and microbiota was characterised by ultra-deep 16S rRNA gene sequencing. Results The microbiota in lower airways of the majority of patients (30; 90%) primarily consisted of Prevotellaceae, Streptococcaceae and Acidaminococcaceae. α and β diversity measurements revealed no significant differences in airway microbiota composition between the five different groups of patients. Comparison of bacterial populations in upper and lower respiratory tract showed significant topographical discontinuities for 7 (23%) individuals. Conclusions IIP, non-IIP and sarcoidosis are not associated with disordered airway microbiota and a pathogenic role of commensals in the disease process is therefore unlikely. Nevertheless, molecular analysis of the topographical microbiota continuity along the respiratory tract may provide additional information to assist management of individual patients.
Resumo:
Background: Regulation of sleep and sleep-related breathing resides in different brain structures. Vascular lesions can be expected to differ in their consequences on sleep depending on stroke topography. However, studies addressing the differences in sleep and sleep-related breathing depending on stroke topography are scarce. The aim of the present investigation was to compare the sleep and sleep-related breathing of patients with supratentorial versus infratentorial stroke. Methods: This study was part of the prospective multicenter study SAS-CARE-1 (Sleep-Disordered Breathing in Transient Ischemic Attack (TIA)/Ischemic Stroke and Continuous Positive Airway Pressure (CPAP) Treatment Efficacy (SAS-CARE); NCT01097967). We prospectively included 14 patients (13 male, age 66 ± 6 years) with infratentorial lesions and 14 patients (14 male, age 64 ± 7 years) with supratentorial lesions, matched for age and stroke severity. Polysomnography was recorded in all during the acute phase within 9 days after stroke onset and 3 months later. Results: During the acute phase after stroke, patients with infratentorial lesions had significantly more sleep-related breathing disorders than patients with supratentorial lesions with an apnea-hypopnea index >20 observed in 8 (57%) patients with infratentorial stroke and in only 2 (14%) patients with supratentorial stroke. Sleep-related breathing improved from the acute to the subacute phase (3 months), albeit remaining elevated in a significant proportion of subjects. Sleep parameters did not differ between the two patient groups but there was a general improvement of sleep from the acute to the subacute phase which was comparable for both patient groups. Although stroke severity was mild, recovery after 3 months was worse in patients with infratentorial stroke with 12 of 14 patients with supratentorial stroke being symptom free (NIHSS = 0), while this was the case for only 6 of 14 patients with infratentorial stroke. Conclusions: Patients with infratentorial lesions are at an increased risk for sleep-related breathing disorders, which are frequent in this group. Monitoring of sleep-related breathing is therefore especially recommended in patients with infratentorial stroke. Because of the absence of reliable differences in sleep parameters between the two patient groups, polygraphy, with reduced diagnostic costs, rather than polysomnography could be considered. The higher prevalence of sleep-related breathing disorders and the poorer recovery of patients with infratentorial lesions suggest that early treatment interventions should be considered.