978 resultados para Extracellular polysaccharide


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular copper regulates the DNA binding activity of the CopY repressor of Enterococcus hirae and thereby controls expression of the copper homeostatic genes encoded by the cop operon. CopY has a CxCxxxxCxC metal binding motif. CopZ, a copper chaperone belonging to a family of metallochaperones characterized by a MxCxxC metal binding motif, transfers copper to CopY. The copper binding stoichiometries of CopZ and CopY were determined by in vitro metal reconstitutions. The stoichiometries were found to be one copper(l) per CopZ and two copper(l) per CopY monomer. X-ray absorption studies suggested a mixture of two- and three-coordinate copper in Cu(1)CopZ, but a purely three-coordinate copper coordination with a Cu-Cu interaction for Cu(1)(2)CopY. The latter coordination is consistent with the formation of a compact binuclear Cu(l)-thiolate core in the CxCxxxxCxC binding motif of CopY. Displacement of zinc, by copper. from CopY was monitored with 2,4-pyridylazoresorcinol. Two copper(l) ions were required to release the single zinc(II) ion bound per CopY monomer. The specificity of copper transfer between CopZ and CopY was dependent on electrostatic interactions. Relative copper binding affinities of the proteins were investigated using the chelator, diethyldithiocarbamic acid (DDC). These data suggest that CopY has a higher affinity for copper than CopZ. However, this affinity difference is not the sole factor in the copper exchange: a charge-based interaction between the two proteins is required for the transfer reaction to proceed. Gain-of-function mutation of a CopZ homologue demonstrated the necessity of four lysine residues on the chaperone for the interaction with CopY. Taken together, these results suggest a mechanism for copper exchange between CopZ and CopY.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of establishing long-range neuronal connections can be divided into at least three discrete steps. First, axons need to be stimulated to grow and this growth must be towards appropriate targets. Second, after arriving at their target, axons need to be directed to their topographically appropriate position and in some cases, such as in cortical structures, they must grow radially to reach the correct laminar layer Third, axons then arborize and form synaptic connections with only a defined subpopulation of potential post-synaptic partners. Attempts to understand these mechanisms in the visual system have been ongoing since pioneer studies in the 1940s highlighted the specificity of neuronal connections in the retino-tectal pathway. These classical systems-based approaches culminated in the 1990s with the discovery that Eph-ephrin repulsive interactions were involved in topographical mapping. In marked contrast, it was the cloning of the odorant receptor family that quickly led to a better understanding of axon targeting in the olfactory system. The last 10 years have seen the olfactory pathway rise in prominence as a model system for axon guidance. Once considered to be experimentally intractable, it is now providing a wealth of information on all aspects of axon guidance and targeting with implications not only for our understanding of these mechanisms in the olfactory system but also in other regions of the nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophages participate in the restenosis process through the release of cytokines, metalloproteinases and growth factors. Studies of peritoneal granulation tissue suggest that macrophages may be precursors of myofibroblasts. This study examined the contribution of monocyte/macrophage lineage cells to neointimal cellular mass in a porcine model of thermal vascular injury. Thermal coronary artery injury caused medial smooth muscle cell necrosis and transformation of the media into an extracellular matrix barrier. The neointimal hyperplasia that developed over the injury sites was evaluated by light microscopy, electron microscopy and immunohistochemistry. At day 3, blood monocytes were adhered to the vessel wall and infiltrated the fibrotic media. At day 14, 42 +/- 3.9% of neointimal cells had a monocytic nuclear morphology and expressed macrophage-specific antigen SWC3 (identified by monoclonal antibody DH59B). Moreover, 9.2+/-1.8% of neointimal cells co-expressed SWC3 and alpha-smooth muscle actin and had ultrastructural characteristics intermediate between macrophages and myofibroblasts. At day 28, 10.5 +/- 3.5%, of cells expressed SWC3 and 5.2+/-1.8% of cells co-expressed SWC3 and alpha-smooth muscle actin. This study indicates that hematopoietic cells of monocyte/macrophage lineage abundantly populate the neointima in the process of lesion formation and may be precursors of neointimal myofibroblasts after thermal vascular injury. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expression and properties of ionic channels were investigated in dissociated neurons from neonatal and adult rat intracardiac ganglia. Changes in the hyperpolarization-activated and ATP-sensitive K+ conductances during postnatal development and their role in neuronal excitability were examined. The hyperpolarization-activated nonselective cation current, I-h, was observed in all neurons studied and displayed slow time-dependent rectification. An inwardly rectifying K+ current, I-K(I), was present in a population of neurons from adult but not neonatal rats and was sensitive to block by extracellular Ba2+. Using the perforated-patch recording configuration, an ATP-sensitive K+ (K-ATP) conductance was identified in greater than or equal to 50% of intracardiac neurons from adult rats. Levcromakalim evoked membrane hyperpolarization, which was inhibited by the sulphonylurea drugs. glibenclamide and tolbutamide. Exposure to hypoxic conditions also activated a membrane current similar to that induced by levcromakalim and was inhibited by glibenclamide. Changes in the complement of ion channels during postnatal development may underlie observed differences in the function of intracardiac ganglion neurons during maturation. Furthermore, activation of hyperpolarization-activated and KATP channels in mammalian intracardiac neurons may play a role in neural regulation of the mature heart and cardiac function during ischaemia-reperfusion. (C) 2002 Elsevier Science B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of a basal nonselective cation permeability was mainly investigated in primary cultures of rat cardiac microvascular endothelial cells (CMEC) by applying both the patch-clamp technique and Fura-2 microfluorimetry. With low EGTA in the pipette solution, the resting membrane potential of CMEC was -21.2 +/- 1.1 mV, and a Ca2+-activated Cl- conductance was present. When the intracellular Ca2+ was buffered with high EGTA, the membrane potential decreased to 5.5 +/- 1.2 mV. In this condition, full or partial substitution of external Na+ by NMDG(+) proportionally reduced the inward component of the basal I-V relationship. This current was dependent on extracellular monovalent cations with a permeability sequence of K+ > Cs+ > Na+ > Li+ and was inhibited by Ca2+, La3+, Gd3+, and amiloride. The K+/Na+ permeability ratio, determined using the Goldman-Hodgkin-Katz equation, was 2.01. The outward component of the basal I-V relationship was reduced when intracellular K+ was replaced by NMDG(+), but was not sensitive to substitution by Cs+. Finally, microfluorimetric experiments indicated the existence of a basal Ca2+ entry pathway, inhibited by La3+ and Gd3+. The basal nonselective cation permeability in CMEC could be involved both in the control of myocardial ionic homeostasis, according to the model of the blood-heart barrier, and in the modulation of Ca2+ -dependent processes. (C) 2002 Elsevier Science (USA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vertebrate Slit gene family currently consists of three members;Slit1,Slit2 and Slit3. Each gene encodes a protein containing multiple epidermal growth factor and leucine rich repeat motifs, which are likely to have importance in cell-cell interactions. In this study, we sought to fully define and characterise the vertebrate Slit gene family. Using long distance PCR coupled with in silico mapping, we determined the genomic structure of all three Slit genes in mouse and man. Analysis of EST and genomic databases revealed no evidence of further Slit family members in either organism. All three Slit genes were encoded by 36 (Slit3) or 37 (Slit1 and Slit2) exons covering at least 143 kb or 183 kb of mouse or human genomic DNA respectively. Two additional potential leucine-rich repeat encoding exons were identified within intron 12 of Slit2. These could be inserted in frame, suggesting that alternate splicing may occur in Slit2 A search for STS sequences within human Slit3 anchored this gene to D5S2075 at the 5' end (exon 4) and SGC32449 within the 3' UTR, suggesting that Slit3 may cover greater than 693 kb. The genomic structure of all Slit genes demonstrated considerable modularity in the placement of exon-intron boundaries such that individual leucine-rich repeat motifs were encoded by individual 72 by exons. This further implies the potential generation of multiple Slit protein isoforms varying in their number of repeat units. cDNA library screening and EST database searching verified that such alternate splicing does occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal and glial high-affinity transporters regulate extracellular glutamate concentration, thereby terminating synaptic transmission and preventing neuronal excitotoxicity. Glutamate transporter activity has been shown to be modulated by protein kinase C (PKC) in cell culture. This is the first study to demonstrate such modulation in situ, by following the fate of the non-metabolisable glutamate transporter substrate, D-aspartate. In the rat retina, pan-isoform PKC inhibition with chelerythrine suppressed glutamate uptake by GLAST (glutamate/aspartate transporter), the dominant excitatory amino acid transporter localized to the glial Muller cells. This effect was mimicked by rottlerin but not by Go6976, suggesting the involvement of the PKCdelta isoform, but not PKCalpha, beta or gamma. Western blotting and immunohistochemical labeling revealed that the suppression of glutamate transport was not due to a change in transporter expression. Inhibition of PKCdelta selectively suppressed GLAST but not neuronal glutamate transporter activity. These data suggest that the targeting of specific glutamate transporters with isoform-specific modulators of PKC activity may have significant implications for the understanding of neurodegenerative conditions arising from compromised glutamate homeostasis, e.g. glaucoma and amyotrophic lateral sclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Venous thromboembolism is a frequent, life-threatening, postoperative complication of hip-fracture and total-knee-replacement surgery. Fondaparinux is a synthetic polysaccharide that selectively binds to antithrombin, the primary endogenous regulator of blood coagulation. Low molecular weight heparins, such as enoxaparin, are less specific inhibitors of coagulation. In patients undergoing hip-fracture surgery, fondaparinux is more effective than once-daily enoxaparin as prophylaxis for venous thromboembolism. Fondaparinux (25 mg/day s.c.) was also more effective than enoxaparin (30 mg s.c. b.i.d.) as prophylaxis for venous thromboembolism in elective knee surgery. These differences may be explained by the fact that there is less prophylaxis cover with enoxaparin, as it has a much shorter duration of action than fondaparinux. Thus, with the present dosing regimens, fondaparinux is probably preferable to enoxaparin for the prevention of venous thromboembolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both purinergic stimulation and activation of cystic fibrosis transmembrane conductance regulator (CFTR) increases Cl- secretion and inhibit amiloride-sensitive Na+ transport. CFTR has been suggested to conduct adenosine 5'-triphosphate (ATP) or to control ATP release to the luminal side of epithelial tissues. Therefore, a possible mechanism on how CFTR controls the activity of epithelial Na+ channels (ENaC) could be by release of ATP or uridine 5'-triphosphate (UTP), which would then bind to P2Y receptors and inhibit ENaC. We examined this question in native tissues from airways and colon and in Xenopus oocytes. Inhibition of amiloride-sensitive transport by both CFTR and extracellular nucleotides was observed in colon and trachea. However, nucleotides did not inhibit ENaC in Xenopus oocytes, even after coexpression of P2Y(2) receptors. Using different tools such as hexokinase, the P2Y inhibitor suramin or the Cl- channel blocker 4,4'diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), we did not detect any role of a putative ATP secretion in activation of Cl- transport or inhibition of amiloride sensitive short circuit currents by CFTR. In addition, N-2,2'-O-dibutyrylguanosine 3',5-cyclic monophosphate (cGMP) and protein kinase G (PKG)-dependent phosphorylation or the nucleoside diphosphate kinase (NDPK) do not seem to play a role for the inhibition of ENaC by CFTR, which, however, requires the presence of extracellular Cl-. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the sympathetic nervous system (SNS) plays a major role in mediating the peripheral stress response, due consideration is not usually given to the effects of prolonged stress on the SNS. The present study examined changes in neurotransmission in the SNS after exposure of mice (BALB/c) to stressful housing conditions. Focal extracellular recording of excitatory junction currents (EJCs) was used as a relative measure of neurotransmitter release from different regions of large surface areas of the mouse vas deferens. Mice were either group housed (control), isolation housed (social deprivation), group housed in a room containing rats (rat odor stress), or isolation housed in a room containing rats (concurrent stress). Social deprivation and concurrent stressors induced an increase of 30 and 335% in EJC amplitude, respectively. The success rate of recording EJCs from sets of varicosities in the concurrent stressor group was greater compared with all other groups. The present study has shown that some common animal housing conditions act as stressors and induce significant changes in sympathetic neurotransmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During bacterial infections, the balance between resolution of infection and development of sepsis is dependent upon the macrophage response to bacterial products. We show that priming of murine bone marrow-derived macrophages (BMMs) with CSF-1 differentially regulates the response to two such stimuli, LPS and immunostimulatory (CpG) DNA. CSF-1 pretreatment enhanced IL-6, IL-12, and TNF-alpha production in response to LPS but suppressed the same response to CpG DNA. CSF-1 also regulated cytokine gene expression in response to CpG DNA and LPS; CpG DNA-induced IL-12 p40, IL-12 p35, and TNF-alpha mRNAs were all suppressed by CSF-1 pretreatment. CSF-1 pretreatment enhanced LPS-induced IL-12 p40 mRNA but not TNF-alpha and IL-12 p35 mRNAs, suggesting that part of the priming effect is posttranscriptional. CSF-1 pretreatment also suppressed CpG DNA-induced nuclear translocation of NF-kappaB and phosphorylation of the mitogen-activated protein kinases p38 and extracellular signal-related kinases-1/2 in BMMs, indicating that early events in CpG DNA signaling were regulated by CSF-1. Expression of Toll-like receptor (TLR)9, which is necessary for responses to CpG DNA, was markedly suppressed by CSF-1 in both BMMs and thioglycolate-elicited peritoneal macrophages. CSF-1 also down-regulated expression of TLR1, TLR2, and TLR6, but not the LPS receptor, TLR4, or TLR5. Hence, CSF-1 may regulate host responses to pathogens through modulation of TLR expression. Furthermore, these results suggest that CSF-1 and CSF-1R antagonists may enhance the efficacy of CpG DNA in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cementum is essential for periodontal regeneration, as it provides anchorage between the root surface and the periodontal ligament. A variety of macromolecules present in the extracellular matrix of the periodontium, including proteoglycans, are likely to play a regulatory role in cementogenesis. Recently, the small leucine-rich proteoglycan, fibromodulin, has been isolated from bovine periodontal ligament and localized in bovine cementum, as well as in human periodontal ligament. Objective: The aim of this study was to examine the distribution of fibromodulin during cementogenesis and root formation. Methods: A standard indirect immunoperoxidase technique was employed, using an antifibromodulin polyclonal antibody on sections of molar teeth from rats aged 3, 5 and 8 weeks. Results: Immunoreactivity to fibromodulin was evident in the periodontal ligament in all sections. An intense positive stain was observed in the extracellular matrix where the periodontal ligament fibers insert into the alveolar bone and where the Sharpey's fibers insert into the cementum. There was no staining evident in the mineralized cellular and acellular cementum. The intensity of immunoreactivity to the antifibromodulin antibody increased proportionally with increasing tissue maturation. Conclusion: The results from this study suggest that fibromodulin is a significant component of the extracellular matrix in the periodontal ligament during development, and may play a regulatory role in the mineralization process or maintaining homeostasis at the hard-soft tissue interface during cementogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the lungfish dentition is partially understood as far as morphology and light microscopic structure is concerned, the ultrastructure is not. Each tooth plate is associated with a dental lamina that develops from the inner layer of endodermal cells that form the oral epithelium. Dentines, bone and cartilage of the jaws differentiate from mesenchyme cells aggregating beneath the oral endothelium. Enamel, in the developing and in the mature form, has similarities to that of other early vertebrates, but unusual characters appear as development proceeds. Ameloblasts are capable of secreting enamel, and, with mononuclear osteoclasts, of remodelling the bone below the tooth plate. The forms of dentine, all based largely on an extracellular matrix of collagen and mineralised with biological apatite, differ from each other and from the underlying bone in the ultrastructure of associated cells and in the mineralised extracellular matrices produced. Cell processes emerging from the odontoblasts and from the osteoblasts vary in length, degree of branching and of anastomoses between the processes, although all of the cell types have large amounts of rough endoplasmic reticulum. Mineralisation of the extracellular matrices varies among the enamel, dentines and bone in the tooth plate. In addition, the development of the hard tissues of the tooth plates indicates that many of the similarities in fine structure of the dentition in lungfish, to tissues in other fish and amphibia, apparent early in development, disappear as the dentition matures. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An interspecific cross was attempted between two homothallic species of Phytophthora, P. sojae and P. vignae. From 1640 single-oospore cultures isolated, DNA was extracted from 800, and two interspecific F-1 hybrids (F(1)1121 and F(1)1426) were putatively identified using RAPD markers. The true hybrid nature of these F-1 hybrids was confirmed using additional AFLP analysis. Single- zoospore cultures were generated for each F-1 hybrid and one single-zoospore culture of each was used in pathogenicity and virulence tests. Both F-1 hybrids were pathogenic to soybean and cowpea, causing symptoms including lesions, wilting and death of susceptible soybean and cowpea cultivars. However, the aggressiveness of the F-1 hybrids was reduced and was substantially more variable when compared with that of the parental isolates on their respective hosts. The F-1 hybrids were reisolated from infected seedlings and their hybrid nature confirmed using RAPD and AFLP analysis. These results provide a basis for further research aimed at obtaining an increased understanding of the genetics of host specificity in the Oomycetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Crim1 gene is predicted to encode a transmembrane protein containing six von Willebrand-like cysteine-rich repeats (CRRs) similar to those in the BMP-binding antagonist Chordin (Chrd). In this study, we verify that CRIM1 is a glycosylated, Type I transmembrane protein and demonstrate that the extracellular CRR-containing domain can also be secreted, presumably via processing at the membrane. We have previously demonstrated Crim1 expression at sites consistent with an interaction with bone morphogenetic proteins (BMPs). Here we show that CRIM1 can interact with both BMP4 and BMP7 via the CRR-containing portion of the protein and in so doing acts as an antagonist in three ways. CRIM1 binding of BMP4 and -7 occurs when these proteins are co-expressed within the Golgi compartment of the cell and leads to (i) a reduction in the production and processing of preprotein to mature BMP, (ii) tethering of pre-BMP to the cell surface, and (iii) an effective reduction in the secretion of mature BMP. Functional antagonism was verified by examining the effect of coexpression of CRIM1 and BMP4 on metanephric explant culture. The presence of CRIM1 reduced the effective BMP4 concentration of the media, thereby acting as a BMP4 antagonist. Hence, CRIM1 modulates BMP activity by affecting its processing and delivery to the cell surface