939 resultados para Exit-site And Tunnel Infection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binase, a member of a family of microbial guanyl-specific ribonucleases, catalyzes the endonucleotic cleavage of single-stranded RNA. It shares 82% amino acid identity with the well-studied protein barnase. We used NMR spectroscopy to study the millisecond dynamics of this small enzyme, using several methods including the measurement of residual dipolar couplings in solution. Our data show that the active site of binase is flanked by loops that are flexible at the 300-μs time scale. One of the catalytic residues, His-101, is located on such a flexible loop. In contrast, the other catalytic residue, Glu-72, is located on a β-sheet, and is static. The residues Phe-55, part of the guanine base recognition site, and Tyr-102, stabilizing the base, are the most dynamic. Our findings suggest that binase possesses an active site that has a well-defined bottom, but which has sides that are flexible to facilitate substrate access/egress, and to deliver one of the catalytic residues. The motion in these loops does not change on complexation with the inhibitor d(CGAG) and compares well with the maximum kcat (1,500 s−1) of these ribonucleases. This observation indicates that the NMR-measured loop motions reflect the opening necessary for product release, which is apparently rate limiting for the overall turnover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hair follicle is a cyclic, self renewing epidermal structure which is thought to be controlled by signals from the dermal papilla, a specialized cluster of mesenchymal cells within the dermis. Topical treatments with 17-beta-estradiol to the clipped dorsal skin of mice arrested hair follicles in telogen and produced a profound and prolonged inhibition of hair growth while treatment with the biologically inactive stereoisomer, 17-alpha-estradiol, did not inhibit hair growth. Topical treatments with ICI 182,780, a pure estrogen receptor antagonist, caused the hair follicles to exit telogen and enter anagen, thereby initiating hair growth. Immunohistochemical staining for the estrogen receptor in skin revealed intense and specific staining of the nuclei of the cells of the dermal papilla. The expression of the estrogen receptor in the dermal papilla was hair cycle-dependent with the highest levels of expression associated with the telogen follicle. 17-beta-Estradiol-treated epidermis demonstrated a similar number of 5-bromo-2'-deoxyuridine (BrdUrd) S-phase cells as the control epidermis above telogen follicles; however, the number of BrdUrd S-phase basal cells in the control epidermis varied according to the phase of the cycle of the underlying hair follicles and ranged from 2.6% above telogen follicles to 7.0% above early anagen follicles. These findings indicate an estrogen receptor pathway within the dermal papilla regulates the telogen-anagen follicle transition and suggest that diffusible factors associated with the anagen follicle influence cell proliferation in the epidermis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleotide excision repair (NER) of ultraviolet light-damaged DNA in eukaryotes requires a large number of highly conserved protein factors. Recent studies in yeast have suggested that NER involves the action of distinct protein subassemblies at the damage site rather than the placement there of a "preformed repairosome" containing all the essential NER factors. Neither of the two endonucleases, Rad1-Rad10 and Rad2, required for dual incision, shows any affinity for ultraviolet-damaged DNA. Rad1-Rad10 forms a ternary complex with the DNA damage recognition protein Rad14, providing a means for targeting this nuclease to the damage site. It has remained unclear how the Rad2 nuclease is targeted to the DNA damage site and why mutations in the human RAD2 counterpart, XPG, result in Cockayne syndrome. Here we examine whether Rad2 is part of a higher order subassembly. Interestingly, we find copurification of Rad2 protein with TFIIH, such that TFIIH purified from a strain that overexpresses Rad2 contains a stoichiometric amount of Rad2. By several independent criteria, we establish that Rad2 is tightly associated with TFIIH, exhibiting an apparent dissociation constant < 3.3 x 10(-9) M. These results identify a novel subassembly consisting of TFIIH and Rad2, which we have designated as nucleotide excision repair factor 3. Association with TFIIH provides a means of targeting Rad2 to the damage site, where its endonuclease activity would mediate the 3' incision. Our findings are important for understanding the manner of assembly of the NER machinery and they have implications for Cockayne syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously demonstrated that the primary region of factor IX and IXa responsible for saturable specific binding to bovine aortic endothelial cells resides in residues 3-11 at the amino terminus of factor IX. We also demonstrated that mutations of lysine to alanine at residue 5, factor IX K5A, or valine to lysine at residue 10, factor IX V10K, resulted in a molecule unable to bind to endothelial cells. Moreover, a mutation with lysine to arginine at residue 5, factor IX K5R, resulted in a factor IX molecule with increased affinity for the endothelial cell binding site. In this paper we report that collagen IV is a strong candidate for the factor IX binding site on endothelial cells. Factor IX and factor IX K5R compete with 125I-labeled factor IX for binding to tetrameric collagen IV immobilized on microtiter plates, while factor X, factor VII, and factor IX K5A or V10K fail to compete. The Kd for wild-type factor IX binding to collagen IV in the presence of heparin was 6.8 +/- 2 nM, and the Kd for factor IX K5R was 1.1 +/- 0.2 nM, which agrees well with our previously published Kd values of 7.4 and 2.4 nM for binding of the same proteins to endothelial cells. Our working assumption is that we have identified the endothelial cell binding site and that it is collagen IV. Its physiological relevance remains to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical injury to the adult mammalian spinal cord results in permanent morphological disintegration including severance/laceration of brain-cord axons at the lesion site. We report here that some of the structural consequences of injury can be averted by altering the cellular components of the lesion site with x-irradiation. We observed that localized irradiation of the unilaterally transected adult rat spinal cord when delivered during a defined time-window (third week) postinjury prevented cavitation, enabled establishment of structural integrity, and resulted in regrowth of severed corticospinal axons through the lesion site and into the distal stump. In addition, we examined the natural course of degeneration and cavitation at the site of lesion with time after injury, noting that through the third week postinjury recovery processes are in progress and only at the fourth week do the destructive processes take over. Our data suggest that the adult mammalian spinal cord has innate mechanisms required for recovery from injury and that timed intervention in certain cellular events by x-irradiation prevents the onset of degeneration and thus enables structural regenerative processes to proceed unhindered. We postulate that a radiation-sensitive subgroup of cells triggers the delayed degenerative processes. The identity of these intrusive cells and the mechanisms for triggering tissue degeneration are still unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurotransmitter is released when Ca2+ triggers the fusion of synaptic vesicles with the plasmalemma. To study factors that regulate Ca2+ concentration at the presynaptic active zones of hair cells, we used laser-scanning confocal microscopy with the fluorescent Ca2+ indicator fluo 3. The experimental results were compared with the predictions of a model of presynaptic Ca2+ concentration in which Ca2+ enters a cell through a point source, diffuses from the entry site, and binds to fixed or mobile Ca2+ buffers. The observed time course and magnitude of fluorescence changes under a variety of conditions were well fit when the model included mobile molecules as the only Ca2+ buffer. The results confirm the localized entry of Ca2+ underlying neurotransmitter release and suggest that Ca2+ is cleared from an active zone almost exclusively by mobile buffer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the mechanism of accurate in vitro RNA editing of Trypanosoma brucei ATPase 6 mRNA, using four mRNA-guide RNA (gRNA) pairs that specify deletion of 2, 3, or 4 U residues at editing site 1 and mitochondrial extract. This extract not only catalyzes deletion of the specified number of U residues but also exhibits a novel endonuclease activity that cleaves the input pre-mRNA in a gRNA-directed manner, precisely at the phosphodiester bond predicted in a simple enzymatic model of RNA editing. This cleavage site is inconsistent with a chimera-based editing mechanism. The U residues to be deleted, present at the 3' end of the upstream cleavage product, are then removed evidently by a 3' U-specific exonuclease and not by a reverse reaction of terminal U transferase. RNA ligase can then join the mRNA halves through their newly formed 5' P and 3' OH termini, generating mRNA faithfully edited at the first editing site. This resultant, partially edited mRNA can then undergo accurate, gRNA-directed cleavage at editing site 2, again precisely as predicted by the enzymatic editing model. All of these enzymatic activities cofractionate with the U-deletion activity and may reside in a single complex. The data imply that each round of editing is a four-step process, involving (i) gRNA-directed cleavage of the pre-mRNA at the bond immediately 5' of the region base paired to the gRNA, (ii) U deletion from or U addition to the 3' OH of the upstream mRNA half, (iii) ligation of the mRNA halves, and (iv) formation of additional base pairing between the correctly edited site and the gRNA that directs subsequent nuclease cleavage at the next editing site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the cleavage mechanism of bacterial Nase P RNA, we have synthesized precursor tRNA substrates carrying a single Rp- or Sp-phosphorothioate modification at the RNase P cleavage site. Both the Sp- and the Rp-diastereomer reduced the rate of processing by Escherichia coli RNase P RNA at least 1000-fold under conditions where the chemical step is rate-limiting. The Rp-modification had no effect and the Sp-modification had a moderate effect on precursor tRNA ground state binding to RNase P RNA. Processing of the Rp-diastereomeric substrate was largely restored in the presence of the "thiophilic" Cd2+ as the only divalent metal ion, demonstrating direct metal ion coordination to the (pro)-Rp substituent at the cleavage site and arguing against a specific role for Mg(2+)-ions at the pro-Sp oxygen. For the Rp-diastereomeric substrate, Hill plot analysis revealed a cooperative dependence upon [Cd2+] of nH = 1.8, consistent with a two-metal ion mechanism. In the presence of the Sp-modification, neither Mn2+ nor Cd2+ was able to restore detectable cleavage at the canonical site. Instead, the ribozyme promotes cleavage at the neighboring unmodified phosphodiester with low efficiency. Dramatic inhibition of the chemical step by both the Rp- and Sp-phosphorothioate modification is unprecedented among known ribozymes and points to unique features of transition state geometry in the RNase P RNA-catalyzed reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myosins I, a ubiquitous monomeric class of myosins that exhibits actin-based motor properties, are associated with plasma and/or vesicular membranes and have been suggested as players for trafficking events between cell surface and intracellular membranous structures. To investigate the function of myosins 1, we have transfected a mouse hepatoma cell line (BWTG3) with cDNAs encoding the chicken brush border myosin-I (BBMI) and two variants truncated in the motor domain. One variant is deleted of the first 446 amino acids and thereby lacks the ATP binding site, whereas the other is deleted of the entire motor domain and lacks the ATP and actin binding sites. We have observed (i) that significant amounts of the truncated variants are recovered with membrane fractions after cell fractionation, (ii) that they codistribute with a compartment containing alpha2-macroglobulin internalized for 30 min as determined by fluorescent microscopy, (iii) that the production of BBMI-truncated variants impairs the distribution of the acidic compartment and ligands internalized for 30 min, and (iv) that the production of the truncated variant containing the actin binding site decreases the rate of alpha2-macroglobulin degradation whereas the production of the variant lacking the ATP binding site and the actin binding site increases the rate of a2-macroglobulin degradation. These observations indicate that the two truncated variants have a dominant negative effect on the distribution and the function of the endocytic compartments. We propose that an unidentified myosin-I might contribute to the distribution of endocytic compartments in a juxtanuclear position and/or to the regulation of the delivery of ligands to the degradative compartment in BWTG3 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phenomenon of Manning-Oosawa counterion condensation is given an explicit statistical mechanical and qualitative basis via a dressed polyelectrolyte formalism in connection with the topology of the electrostatic free-energy surface and is derived explicitly in terms of the adsorption excess of ions about the polyion via the nonlinear Poisson-Boltzmann equation. The approach is closely analogous to the theory of ion binding in micelles. Our results not only elucidate a Poisson-Boltzmann analysis, which shows that a fraction of the counterions lie within a finite volume around the polyion even if the volume of the system tends towards infinity, but also provide a direct link between Manning's theta-the number of condensed counterions for each polyion site-and a statistical thermodynamic quantity, namely, the adsorption excess per monomer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Shc adaptor protein, hereafter referred to as ShcA, possesses two distinct phosphotyrosine-recognition modules, a C-terminal Src homology 2 (SH2) domain and an N-terminal phosphotyrosine-binding (PTB) domain, and is itself phosphorylated on tyrosine in response to many extracellular signals. Phosphorylation of human ShcA at Tyr-317 within its central (CH1) region induces binding to the Grb2 SH2 domain and is thereby implicated in activation of the Ras pathway. Two shc-related genes (shcB and shcC) have been identified in the mouse. shcB is closely related to human SCK, while shcC has not yet been found in other organisms. The ShcC protein is predicted to have a C-terminal SH2 domain, a CH1 region with a putative Grb2-binding site, and an N-terminal PTB domain. The ShcC and ShcB SH2 domains bind phosphotyrosine-containing peptides and receptors with a specificity related to, but distinct from, that of the ShcA SH2 domain. The ShcC PTB domain specifically associates in vitro with the autophosphorylated receptors for nerve growth factor and epidermal growth factor. These results indicate that ShcC has functional SH2 and PTB; domains. In contrast to shcA, which is widely expressed, shcC RNA and proteins are predominantly expressed in the adult brain. These results suggest that ShcC may mediate signaling from tyrosine kinases in the nervous system, such as receptors for neurotrophins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism(s) that regulates invasion of trophoblasts through the uterine epithelium during embryo implantation and nidation in hemochorial placental mammals is poorly understood. While limited trophoblast invasion is essential for the establishment of normal pregnancy, dysregulation of this process may contribute to the pathogenesis of choriocarcinoma, a highly invasive and lethal form of cancer arising from the trophoblasts. We have previously demonstrated that rabbit uteroglobin (UG), a cytokine-like, antiinflammatory protein, produced by the endometrial epithelium during pregnancy, has a potent antichemotactic effect on neutrophils and monocytes in vitro. Here, we report that recombinant human UG (hUG) dramatically suppresses invasion of human trophoblasts and NIH 3T3 cells through an artificial basement membrane (Matrigel) in vitro but has no effect on that of human choriocarcinoma cells. We identified a previously unreported high-affinity, high molecular weight (approximately 190 kDa), nonglycosylated hUG-binding protein, readily detectable on human trophoblasts and NIH 3T3 cells but totally lacking on choriocarcinoma cells. Taken together, these results raise the possibility that (i) hUG plays a critical role in regulating cellular invasiveness, at least in part, via its previously unrecognized cell surface binding site, and (ii) some of the numerous biological activities of proteins of the UG family, reported so far, may be mediated via this binding site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunological self-tolerance is ensured by eliminating or inhibiting self-reactive lymphocyte clones, creating physical or functional holes in the B- and T-lymphocyte antigen receptor repertoires. The nature and size of these gaps in our immune defenses must be balanced against the necessity of mounting rapid immune responses to an everchanging array of foreign pathogens. To achieve this balance, only a fraction of particularly hazardous self-reactive clones appears to be physically eliminated from the repertoire in a manner that fully prevents their recruitment into an antimicrobial immune response. Many self-reactive cells are retained with a variety of conditional and potentially flexible restraints: (i) their ability to be triggered by antigen is diminished by mechanisms that tune down signaling by their antigen receptors, (ii) their ability to carry out inflammatory effector functions can be inhibited, and (iii) their capacity to migrate and persist is constrained. This balance between tolerance and immunity can be shifted, altering susceptibility to autoimmune disease and to infection by genetic or environmental differences either in the way antigens are presented, in the tuning molecules that adjust triggering set points for lymphocyte responses to antigen, or in the effector molecules that eliminate, retain, or expand particular clones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results presented here demonstrate that the thermodynamics of oligocation binding to polymeric and oligomeric DNA are not equivalent because of long-range electrostatic effects. At physiological cation concentrations (0.1-0.3 M) the binding of an oligolysine octacation KWK6-NH2 (+8 charge) to single-stranded poly(dT) is much stronger per site and significantly more salt concentration dependent than the binding of the same ligand to an oligonucleotide, dT(pdT)10 (-10 charge). These large differences are consistent with Poisson-Boltzmann calculations for a model that characterizes the charge distributions with key preaveraged structural parameters. Therefore, both the experimental and the theoretical results presented here show that the polyelectrolyte character of a polymeric nucleic acid makes a large contribution to both the magnitude and the salt concentration dependence of its binding interactions with simple oligocationic ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetic analysis and molecular modeling have been used to map the ribonucleolytic center of angiogenin (Ang). Pyrimidine nucleotides were found to interact very weakly with Ang, consistent with the inaccessible B1 pyrimidine binding site revealed by x-ray crystallography. Ang also lacks an effective phosphate binding site on the 5' side of B1. Although the B2 site that preferentially binds purines on the 3' side of B1 is also weak, its associated phosphate subsites make substantial contributions: both 3',5'-ADP and 5'-ADP have Ki values 6-fold lower than for 5'-AMP, and adding a 3'-phosphate to the substrate CpA increases Kcat/Km by 9-fold. Thus Ang has a functional P2 site on the 3' side of B2 and a site for a second phosphate on the 5' side of B2. Modeling of an Ang-d(ApTpApA) complex suggested that Arg-5 forms part of the P2 site and that a 2'-phosphate might bind more tightly than a 3'-phosphate. Both predictions were confirmed kinetically. The subsite map obtained by this combined approach indicated that 5'-diphosphoadenosine 2'-phosphate might be a more potent inhibitor than any of the nucleotides tested thus far. Indeed, its Ki value of 150 microM is 50-fold lower than that for the best nucleotide previously reported and 400-fold lower than the Km for the best dinucleotide substrate. This compound may serve as a suitable starting point for the eventual design of tight-binding inhibitors of Ang as antiangiogenic agents for human therapy.