883 resultados para Exceeding electrical energy
Resumo:
A detailed investigation both of the DC and of the AC electrical properties of the Schottky barrier formed between aluminium and electrodeposited poly(3-methylthiophene) is reported. The devices show rectification ratios up to 2 x 10(4) which can be increased further after post-metal annealing. The reverse characteristics of the devices follow predictions based on the image-force lowering of the Schottky barrier, from which the doping density can be estimated, As the forward voltage increases, the device current is limited by the bulk resistance of the polymer with some evidence for injection limitation at the gold counter-electrode at high bias. In the bulk-limited regime, the device current is thermally activated near room temperature with an activation energy in the range 0.2-0.3 eV. Below about 150 K the device current is almost independent of temperature. Capacitance-voltage plots obtained at frequencies well below the device relaxation frequency indicate the presence of two distinct acceptor states, A set of shallow acceptor states are active in forward bias and are believed to determine the bulk conductivity of the polymer. A set of deeper accepters are active only for very small forward voltages and for all reverse voltages, namely when band banding causes the Fermi energy to cross these states. The density of these deeper states is approximately an order of magnitude greater than that of the shallow states. Evidence is presented also for the influence of fabrication conditions on the formation of an insulating interfacial layer at the rectifying interface. The presence of such a layer leads to inversion at the polymer surface and a modification of the I-V characteristics.
Resumo:
Poly(phenylene vinylene) (PPV) grown via the precursor route, deposited on top of heavily doped n-type silicon, was studied using electrical measurement techniques. The results are compared to PPV grown via deposition of soluble derivative (MEH-PPV). The two types are very similar. They have comparable free carrier densities and both show minority-carrier effects. The activation energy found via the loss tangent is 0.13 eV. The effect of exposure to oxygen is visible in the capacitance and the current.
Resumo:
The present work reports some experimental results on the electrical AC behaviour of metal-undoped diamond Schottky diodes fabricated with a free-standing MPCVD diamond film (5 mum thick). The metals are gold for the ohmic contact and aluminium for the rectifier. The capacitance and loss tangent vs, frequency shows that capacitance presents a relaxation maximum at frequencies near 10 kHz at room temperature. Although the simple model (small equivalent circuit) can justify the values for the relaxation, it cannot justify the departure from the Debye model, also verified in the Cole-Cole plot. Taking into account the existence of traps in the depletion region, a best fit to the experimental results was obtained. The difference between the Fermi level and the band edge of 0.2-0.3 eV is in agreement with the activation energy found from the loss tangent analysis. The capacitance with applied voltage (Mott-Schottky plots) gives a defect density of 10(16) cm(-3) with contact potentials near 0.5 V and the profile of defect density obtained shows a major density (approx. 10(17) cm(-3)) in a layer with a thickness less than 50 nm from the junction, decreasing by one order of magnitude with increasing distance. Finally a structural model is proposed to explain the AC behaviour found. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Time-optimal response is an important and sometimes necessary characteristic of dynamic systems for specific applications. Power converters are widely used in different electrical systems and their dynamic response will affect the whole system. In many electrical systems like microgrids or voltage regulators which supplies sensitive loads fast dynamic response is a must. Minimum time is the fastest converter to compensate the step output reference or load change. Boost converters as one of the wildly used power converters in the electrical systems are aimed to be controlled in optimal time in this study. Linear controllers are not able to provide the optimal response for a boost converter however they are still useful and functional for other applications like reference tracking or stabilization. To obtain the fastest possible response from boost converters, a nonlinear control approach based on the total energy of the system is studied in this research. Total energy of the system considers as the basis for developing the presented method, since it is easy and accurate to measure besides that the total energy of the system represents the actual operating condition of the boost converter. The detailed model of a boost converter is simulated in MATLAB/Simulink to achieve the time optimal response of the boost converter by applying the developed method. The simulation results confirmed the ability of the presented method to secure the time optimal response of the boost converter under four different scenarios.
Resumo:
One-dimensional nanostructures initiated new aspects to the materials applications due to their superior properties compared to the bulk materials. Properties of nanostructures have been characterized by many techniques and used for various device applications. However, simultaneous correlation between the physical and structural properties of these nanomaterials has not been widely investigated. Therefore, it is necessary to perform in-situ study on the physical and structural properties of nanomaterials to understand their relation. In this work, we will use a unique instrument to perform real time atomic force microscopy (AFM) and scanning tunneling microscopy (STM) of nanomaterials inside a transmission electron microscopy (TEM) system. This AFM/STM-TEM system is used to investigate the mechanical, electrical, and electrochemical properties of boron nitride nanotubes (BNNTs) and Silicon nanorods (SiNRs). BNNTs are one of the subjects of this PhD research due to their comparable, and in some cases superior, properties compared to carbon nanotubes. Therefore, to further develop their applications, it is required to investigate these characteristics in atomic level. In this research, the mechanical properties of multi-walled BNNTs were first studied. Several tests were designed to study and characterize their real-time deformation behavior to the applied force. Observations revealed that BNNTs possess highly flexible structures under applied force. Detailed studies were then conducted to understand the bending mechanism of the BNNTs. Formations of reversible ripples were observed and described in terms of thermodynamic energy of the system. Fracture failure of BNNTs were initiated at the outermost walls and characterized to be brittle. Second, the electrical properties of individual BNNTs were studied. Results showed that the bandgap and electronic properties of BNNTs can be engineered by means of applied strain. It was found that the conductivity, electron concentration and carrier mobility of BNNTs can be tuned as a function of applied stress. Although, BNNTs are considered to be candidate for field emission applications, observations revealed that their properties degrade upon cycles of emissions. Results showed that due to the high emission current density, the temperature of the sample was increased and reached to the decomposition temperature at which the B-N bonds start to break. In addition to BNNTs, we have also performed in-situ study on the electrochemical properties of silicon nanorods (SiNRs). Specifically, lithiation and delithiation of SiNRs were studied by our STM-TEM system. Our observations showed the direct formation of Li22Si5 phases as a result of lithium intercalation. Radial expansion of the anode materials were observed and characterized in terms of size-scale. Later, the formation and growth of the lithium fibers on the surface of the anode materials were observed and studied. Results revealed the formation of lithium islands inside the ionic liquid electrolyte which then grew as Li dendrite toward the cathode material.
Resumo:
High voltage electrophoretic deposition (HVEPD) has been developed as a novel technique to obtain vertically aligned forests of one-dimensional nanomaterials for efficient energy storage. The ability to control and manipulate nanomaterials is critical for their effective usage in a variety of applications. Oriented structures of one-dimensional nanomaterials provide a unique opportunity to take full advantage of their excellent mechanical and electrochemical properties. However, it is still a significant challenge to obtain such oriented structures with great process flexibility, ease of processing under mild conditions and the capability to scale up, especially in context of efficient device fabrication and system packaging. This work presents HVEPD as a simple, versatile and generic technique to obtain vertically aligned forests of different one-dimensional nanomaterials on flexible, transparent and scalable substrates. Improvements on material chemistry and reduction of contact resistance have enabled the fabrication of high power supercapacitor electrodes using the HVEPD method. The investigations have also paved the way for further enhancements of performance by employing hybrid material systems and AC/DC pulsed deposition. Multi-walled carbon nanotubes (MWCNTs) were used as the starting material to demonstrate the HVEPD technique. A comprehensive study of the key parameters was conducted to better understand the working mechanism of the HVEPD process. It has been confirmed that HVEPD was enabled by three key factors: high deposition voltage for alignment, low dispersion concentration to avoid aggregation and simultaneous formation of holding layer by electrodeposition for reinforcement of nanoforests. A set of suitable parameters were found to obtain vertically aligned forests of MWCNTs. Compared with their randomly oriented counterparts, the aligned MWCNT forests showed better electrochemical performance, lower electrical resistance and a capability to achieve superhydrophpbicity, indicating their potential in a broad range of applications. The versatile and generic nature of the HVEPD process has been demonstrated by achieving deposition on flexible and transparent substrates, as well as aligned forests of manganese dioxide (MnO2) nanorods. A continuous roll-printing HVEPD approach was then developed to obtain aligned MWCNT forest with low contact resistance on large, flexible substrates. Such large-scale electrodes showed no deterioration in electrochemical performance and paved the way for practical device fabrication. The effect of a holding layer on the contact resistance between aligned MWCNT forests and the substrate was studied to improve electrochemical performance of such electrodes. It was found that a suitable precursor salt like nickel chloride could be used to achieve a conductive holding layer which helped to significantly reduce the contact resistance. This in turn enhanced the electrochemical performance of the electrodes. High-power scalable redox capacitors were then prepared using HVEPD. Very high power/energy densities and excellent cyclability have been achieved by synergistically combining hydrothermally synthesized, highly crystalline α-MnO2 nanorods, vertically aligned forests and reduced contact resistance. To further improve the performance, hybrid electrodes have been prepared in the form of vertically aligned forest of MWCNTs with branches of α-MnO2 nanorods on them. Large- scale electrodes with such hybrid structures were manufactured using continuous HVEPD and characterized, showing further improved power and energy densities. The alignment quality and density of MWCNT forests were also improved by using an AC/DC pulsed deposition technique. In this case, AC voltage was first used to align the MWCNTs, followed by immediate DC voltage to deposit the aligned MWCNTs along with the conductive holding layer. Decoupling of alignment from deposition was proven to result in better alignment quality and higher electrochemical performance.
Resumo:
Recently, the interest of the automotive market for hybrid vehicles has increased due to the more restrictive pollutants emissions legislation and to the necessity of decreasing the fossil fuel consumption, since such solution allows a consistent improvement of the vehicle global efficiency. The term hybridization regards the energy flow in the powertrain of a vehicle: a standard vehicle has, usually, only one energy source and one energy tank; instead, a hybrid vehicle has at least two energy sources. In most cases, the prime mover is an internal combustion engine (ICE) while the auxiliary energy source can be mechanical, electrical, pneumatic or hydraulic. It is expected from the control unit of a hybrid vehicle the use of the ICE in high efficiency working zones and to shut it down when it is more convenient, while using the EMG at partial loads and as a fast torque response during transients. However, the battery state of charge may represent a limitation for such a strategy. That’s the reason why, in most cases, energy management strategies are based on the State Of Charge, or SOC, control. Several studies have been conducted on this topic and many different approaches have been illustrated. The purpose of this dissertation is to develop an online (usable on-board) control strategy in which the operating modes are defined using an instantaneous optimization method that minimizes the equivalent fuel consumption of a hybrid electric vehicle. The equivalent fuel consumption is calculated by taking into account the total energy used by the hybrid powertrain during the propulsion phases. The first section presents the hybrid vehicles characteristics. The second chapter describes the global model, with a particular focus on the energy management strategies usable for the supervisory control of such a powertrain. The third chapter shows the performance of the implemented controller on a NEDC cycle compared with the one obtained with the original control strategy.
Resumo:
This dissertation studies the manipulation of particles using acoustic stimulation for applications in microfluidics and templating of devices. The term particle is used here to denote any solid, liquid or gaseous material that has properties, which are distinct from the fluid in which it is suspended. Manipulation means to take over the movements of the particles and to position them in specified locations. ^ Using devices, microfabricated out of silicon, the behavior of particles under the acoustic stimulation was studied with the main purpose of aligning the particles at either low-pressure zones, known as the nodes or high-pressure zones, known as anti-nodes. By aligning particles at the nodes in a flow system, these particles can be focused at the center or walls of a microchannel in order to ultimately separate them. These separations are of high scientific importance, especially in the biomedical domain, since acoustopheresis provides a unique approach to separate based on density and compressibility, unparalleled by other techniques. The study of controlling and aligning the particles in various geometries and configurations was successfully achieved by controlling the acoustic waves. ^ Apart from their use in flow systems, a stationary suspended-particle device was developed to provide controllable light transmittance based on acoustic stimuli. Using a glass compartment and a carbon-particle suspension in an organic solvent, the device responded to acoustic stimulation by aligning the particles. The alignment of light-absorbing carbon particles afforded an increase in visible light transmittance as high as 84.5%, and it was controlled by adjusting the frequency and amplitude of the acoustic wave. The device also demonstrated alignment memory rendering it energy-efficient. A similar device for suspended-particles in a monomer enabled the development of electrically conductive films. These films were based on networks of conductive particles. Elastomers doped with conductive metal particles were rendered surface conductive at particle loadings as low as 1% by weight using acoustic focusing. The resulting films were flexible and had transparencies exceeding 80% in the visible spectrum (400-800 nm) These films had electrical bulk conductivities exceeding 50 S/cm. ^
Resumo:
Hysteresis and multistability are fundamental phenomena of driven nonlinear oscillators, which, however, restrict many applications such as mechanical energy harvesting. We introduce an electrical control mechanism to switch from the low to the high energy output branch of a nonlinear energy harvester by exploiting the strong interplay between its electrical and mechanical degrees of freedom. This method improves the energy conversion efficiency over a wide bandwidth in a frequency-amplitude-varying environment using only a small energy budget. The underlying effect is independent of the device scale and the transduction method and is explained using a modified Duffing oscillator model.
Resumo:
TESLA project (Transfering Energy Save Laid on Agroindustry) financed by the European Commission, had the main goals of evaluating the energy consumption and to identify the best available practices to improve energy efficiency in key agro-food sectors, such as the olive oil mills. A general analysis of energy consumptions allowed identifying the partition between electrical and thermal energy (approximately 50%) and the production processes responsible for the higher energy consumptions, as being the in the mill and paste preparation and the phases separation. Some measures for reducing energy waste and for improving energy efficiency were identified and the impact was evaluated by using the TESLA tool developed by Circe and available at the TESLA website.
Resumo:
This paper presents a methodology to forecast the hourly and daily consumption in households. The methodology was validated for households in Lisbon region, Portugal. The paper shows that the forecast tool allows obtaining satisfactory results for forecasting. Models of demand response allow the support of consumer’s decision in exchange for an economic benefit by the redefinition of load profile or changing the appliance consumption period. It is also in the interest of electric utilities to take advantage of these changes, particularly when consumers have an action on the demand-side management or production. Producers need to understand the load profile of households that are connected to a smart grid, to promote a better use of energy, as well as optimize the use of micro-generation from renewable sources, not only to delivering to the network but also in self-consumption.
Resumo:
This paper presents a methodology to forecast the hourly and daily consumption in households assisted by cyber physical systems. The methodology was validated using a database of consumption of a set of 93 domestic consumers. Forecast tools used were based on Fast Fourier Series and Generalized Reduced Gradient. Both tools were tested and their forecast results were compared. The paper shows that both tools allow obtaining satisfactory results for energy consumption forecasting.
Resumo:
This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work; Resumo: Avanços na integracão de potência fotovoltaica e producão de energia em sistemas práticos Esta tese apresenta avanços na integração de potência e energia fotovoltaica (PV) em sistemas práticos, tais como centrais existentes ou a rede eléctrica pública. Come ça por analisar o estado corrente do fotovoltaico no mundo e aborda algumas das suas limitações. O trabalho feito para esta tese de doutoramento começou pelo desenvolvimento de um modelo para calcular os sombreamentos que ocorrem em grandes campos fotovoltaicos, e depois apresenta um estudo sobre a integração um sistema fotovoltaico em uma central eléctrica a bióg as. As ultimas secções da tese focam-se no trabalho feito para o projecto PVCROPS, que consistiu na construção e operação de dois demonstratores, cada um formado por um sistema fotovoltaico e bateria conectados a um edíficio e a rede eléctrica pública. Estes protótipos foram posteriormente utilizados para testar estratégias de gestão de energia (EMS) e para validar a operação de duas baterias avançadas (bateria de Iões de Li tio e bateria de Fluxo Redox de Van adio) e a sua utiliza ção para habitações e centrais PV. A tese está dividida em 7 capitulos: O capitulo 1 apresenta uma introdução para explicar e desenvolver as principais questões que foram investigadas nesta tese; O capitulo 2 mostra o desenvolvimento de um modelo baseado em traçados de raios para calcular sombreamentos mútuos em grandes centrais PV (com e sem seguidores); O capitulo 3 mostra a simulação da hibridização de uma central electrica a biogas com uma central PV, e utilizando o biógas como armazenamento de energia. Os capitulos 4 e 5 apresentam a construção, programação e operação inicial dos dois demonstradores (Capitúlo 4), o teste de EMS orientadas para sistemas PV em habitações (Capítulo 5). Finalmente, o capítulo 6 sugere algumas futuras linhas de investigação que poderão seguir esta tese, e o Capítulo 7 faz uma sinopse das principais conclusões deste trabalho.