999 resultados para Espaço, finitude, Arte, permanência
Resumo:
The conventional approach to simple quantum chemistry models is contrasted with that known as momentum representation, where the wavefunctions are momentum dependent. Since the physical interactions are the same, state energies should not change, and whence the energy differences correlating with the real world as spectral lines or bands. We emphasize that one representation is not more fundamental than the other, and the choice is a matter of mathematical convenience. As spatial localization is rooted in our brains, to think in terms of the momentum present us a great mental challenge that can lead to complementary perspectives of a model.
Resumo:
Painovuosi nimekkeestä.
Resumo:
Painovuosi nimekkeestä.
Resumo:
Invocatio: Q.F.F.Q.S.
Resumo:
Colloidal semiconductor nanocrystals, also known as quantum dots, have attracted great attention since they have interesting size-dependent properties due to the quantum confinement effect. These nanoparticles are highly luminescent and have potential applications in different technological areas, including biological labeling, light-emitting diodes and photovoltaic devices. The synthetic methods of semiconductor nanocrystals have progressed in the last 30 years, and several protocols were developed to synthesize monodisperse nanocrystals with good optical properties, different compositions and morphologies. This review describes the main methods used to synthesize nanocrystals in the II-VI and III-V systems, and the recent approaches in this field of research.
Resumo:
This review describes the advantages and disadvantages of using capillary liquid chromatography (CLC), which is considered the newest member in the analytical separation science arsenal. Although CLC has tremendous potential for being the next major innovation in separatory analysis, it has not yet obtained great popularity compared to conventional high performance (and ultra-high performance) liquid chromatography. Comparisons are made between these techniques and some of the reasons that CLC has not yet reached its potential will be advanced.
Resumo:
In the present work, Raman Microscopy was employed in the characterization of the pigments used in a drawing assigned to Tarsila do Amaral, one of the most important Brazilian artists. The work (colored pencil on paper), supposedly produced in the 1920 decade, is of a very simple composition, where blue, green and brown were the colors used. Prussian Blue was found as the blue pigment, whereas green was a mixture of copper phthalocyanine and a yellow dye, probably a diarylide; the brown pigment was a carbonaceous compound. Prussian Blue was replaced by phthalocyanine as pigment since the end of the 1930's and the possibility that it could have been used as pigment in the 1920's can be ruled out.
Resumo:
The determination of veterinary drug residues in foods of animal origin is an important issue because of the risk these compounds pose to human health in addition to their persistence and tendency to bioaccumulate. In recent years, significant progress has been made in the area and this review presents the state of the art in sample preparation procedures associated with chromatographic techniques coupled to mass spectrometry for multiresidue determination of veterinary drugs in food of animal origin at concentration levels suitable for the control of residues and contaminants in food.
Resumo:
Brazilian biodiversity is a colossal source of secondary metabolites with remarkable structural features, which are valuable in further biodiscovery studies. In order to fully understand the relations and interactions of a living system with its surroundings, efforts in natural product chemistry are directed toward the challenge of detecting and identifying all the molecular components present in complex samples. It is plausible that this endeavor was born out of recent technological sophistication in secondary metabolite identification with sensitive spectroscopic instruments (MS and NMR) and higher resolving power of chromatographic systems, which allow a decrease in the amount of required sample and time to acquire data. Nevertheless, the escalation of data acquired in these analyses must be sorted with statistical and multi-way tools in order to select key information. Chromatography is also of paramount importance, more so when selected compounds need to be isolated for further investigation. However, in the course of pursuing a "greener" environment, new policies, with an aim to decrease the use of energy and solvents, are being developed and incorporated into analytical methods. Metabolomics could be an effective tool to answer questions on how living organisms in our huge biodiversity work and interact with their surroundings while also being strategic to the development of high value bio-derived products, such as phytotherapeutics and nutraceuticals. The incorporation of proper phytotherapeutics in the so-called Brazilian Unified Health System is considered an important factor for the urgent improvement and expansion of the Brazilian national health system. Furthermore, this approach could have a positive impact on the international interest toward scientific research developed in Brazil as well as the development of high value bio-derived products, which appear as an interesting economic opportunity in national and global markets. Thus, this study attempts to highlight the recent advances in analytical tools used in detection of secondary metabolites, which can be useful as bioproducts. It also emphasizes the potential avenues to be explored in Brazilian biodiversity, known for its rich chemical diversity.
Resumo:
The constant evolution of science and the growing demand for new technologies have led to new techniques in instrumentation that can improve detection, separation, resolution, and peak capacity. Comprehensive two-dimensional liquid chromatography (LC×LC) is presented as a powerful tool in complex sample analyses. During an analysis, a sample is subjected to two independent separation mechanisms that are combined, resulting in increased resolving power. For appropriate application of LC×LC, understanding the influence of parameters that require optimization is necessary. The main purpose of optimization is to predict the combination of stationary phases, separation conditions, and instrumental requirements to obtain the best separation performance. This review discusses theoretical, intrumental, and chemometric aspects of LC×LC and focuses on its applications in foods. It aims to provide a clear understanding of the aspects that can be used as strategies in the optimization of this analytical method.
Resumo:
Spatiotemporal pattern formation in reaction-transport systems takes place spontaneously when the system is kept far from thermodynamic equilibrium. Targets, reaction fronts, waves, spirals, spots and stripes are some typical examples of selforganized structuring. In electrochemical systems, monitoring spatiotemporal patterns of potential in the solid/liquid interface can be done by the use of equally distributed microprobes located close to the working electrode. However, the physical size of each probe can limit the spatial resolution and alter mass transport properties. In contrast, the direct measurement of discrete electrodes does not suffer from this limitation and allows the accurate manipulation of the spatial coupling through changes in resistors connected to the electric circuit. In this paper, the development of an electrochemical setup for multichannel data acquisition with spatiotemporal resolution is described, especially to monitor low levels of currents usually observed in the electro-oxidation of small organic molecules.
Resumo:
Along the historical background of science, the hydrogen bond became widely known as the universal interaction, thus playing a key role in many molecular processes. Through the available theoretical approaches, many of these processes can be unveiled on the basis of the molecular parameters of the subject intermolecular system, such as the variation of bond length and mainly the frequency shift observed in the proton donor. Supported by the natural bond analysis (NBO) with the quantification of the hybridization contributions, the structural deformations and vibrational effects cited above are also attributed to the outcome of the intermolecular interaction strength, which consequently can be estimated by means of the quantum theory of atoms in molecules (QTAIM) as well as evaluated by the symmetry-adapted perturbation theory (SAPT). Moreover, to identify the preferential interaction sites for proton donors and acceptors, the molecular electrostatic potential (MEP) is useful in this regard.
Resumo:
Hydrophilic interaction liquid chromatography (HILIC) has been gaining increased attention for its effective separation of highly polar compounds, which include carbohydrates, amino acids, pharmaceutical compounds, proteins, glycoproteins, nucleosides, etc. Polar compounds are usually poorly retained on reverse-phase liquid chromatography (RP-HPLC) columns or have poor solubility in the apolar mobile phase of normal-phase high performance liquid chromatography (NP-HPLC). Since HILIC uses organic solvents such as ACN or MeOH ( > 70%), also used in RP-HPLC and polar stationary phases similar to NP-HPLC (bare silica, diol, amino, amide, saccharide, zwitterionic stationary phases, etc.), it represents a hybrid of the two separation modes. The high organic content in the MP leads to good compatibility with mass spectrometry (MS), increasing the detectivity. This review describes the fundamentals of HILIC and highlights some interesting applications.
Resumo:
Objetivou-se no presente trabalho caracterizar o progresso espaço-temporal da severidade da antracnose do feijoeiro comum e da ramulose do algodoeiro por meio da Geoestatística. Os experimentos foram conduzidos no campo, durante o período das águas, em diferentes épocas. Sementes inoculadas pelo método da restrição hídrica foram semeadas no centro de parcelas experimentais constituindo fonte de inóculo do tipo ponto. Foram realizadas semanalmente seis avaliações da severidade das doenças com base em escalas de notas. Pelos modelos de semivariograma isotrópicos esféricos e gaussianos ajustados aos dados, verificou-se o padrão de distribuição agregado e a dependência espacial de ambos os patossistemas. Com o mapeamento da severidade das doenças pelo método da krigagem ordinária em blocos, verificou-se menor severidade das doenças nos primeiros estádios, com aumento gradual ao longo do tempo. A antracnose apresentou formação inicial de focos de inóculo secundário, além do foco com inóculo inicial, que coalesceram com o tempo. A severidade da ramulose diminuiu gradualmente de forma radial e contínua do centro da parcela para as extremidades, com maior capacidade de infecção de plantas vizinhas, quando comparada à antracnose, possivelmente pela maior agressividade do patógeno e hábito de crescimento arbustivo do algodoeiro.