977 resultados para Escherichia coli. Salmonella spp
Resumo:
The sigma (σ) subunit of eubacterial RNA polymerase is essential for initiation of transcription at promoter sites. σ factor directs the RNA polymerase core subunits ( a2bb′ ) to the promoter consensus elements and thereby confers selectivity for transcription initiation. The N-terminal domain (region 1.1) of Escherichia coli σ70 has been shown to inhibit DNA binding by the C-terminal DNA recognition domains when σ is separated from the core subunits. Since DNA recognition by RNA polymerase is the first step in transcription, it seemed plausible that region 1 might also influence initiation processes subsesquent to DNA binding. This study explores the functional roles of regions 1.1 and 1.2 of σ70 in transcription initiation. Analysis in vitro of the transcriptional properties of a series of N-terminally truncated σ70 derivates revealed a critical role for region 1.1 at several key stages of initiation. Deletion of the first 75 to 100 amino acids of σ70 (region 1.1) resulted in both a slow rate of transition from a closed promoter complex to a DNA-strand-separated open complex, as well as a reduced efficiency of transition from the open complex to a transcriptionally active open complex. These effects were partially reversed by addition of a polypeptide containing region 1.1 in trans. Therefore, region 1.1 not only modulates DNA binding but is important for efficient transcription initiation, once a closed complex has formed. A deletion of the first 133 amino acids which removes both regions 1.1 and 1.2 resulted in arrest of initiation at the earliest closed complex, suggesting that region 1.2 is required for open complex formation. Mutagenesis of region 1.1 uncovered a mechanistically important role for isoleucine at position 53 (I53). Substitution of I53 with alanine created a σ factor that associated with the core subunits to form holoenzyme, but the holoenzyme was severely deficient for promoter binding. The I53A phenotype was suppressed in vivo by truncation of five amino acids from the C-terminus of σ 70. These observations are consistent with a model in which σ 70I53A fails to undergo a critical conformational change upon association with the core subunits, which is needed to expose the DNA-binding domains and confer promoter recognition capability upon holoenzyme. To understand the basis of the autoinhibitory properties of the σ70 N-terminal domain, in the absence of core RNA polymerase, a preliminary physical assessment of the interdomain interactions within the σ70 subunit was launched. Results support a model in which N-terminal amino acids are in close proximity to residues in the C-terminus of the σ 70 polypeptide. ^
Resumo:
The nar operon, which encodes the nitrate reductase in Escherichia coli, can be induced under anaerobic conditions without nitrate to a low level and with nitrate to a maximum level. The anaerobic formation of nitrate reductase is dependent upon the fnr gene product while the narL gene product is required for further induction by nitrate. The sequence was determined across the entire promoter and regulatory region of the nar operon. The translational start site of the first structural gene of the nar operon, narG gene, was established by identifying the nucleotide sequence for the first 20 N-terminal amino acid residues of the alpha subunit of nitrate reductase. The transcriptional start site and the level of the transcript was determined by S1 mapping procedure. One major transcript was identified which was initiated 50 base pair (bp) upstream from the translational start site of the first structural gene. The synthesis of the transcript was repressed aerobically, fully induced by nitrate anaerobically, and greatly reduced in a ${\rm Fnr\sp-}$ mutant. Deletions were created in the 5$\sp\prime$ nar regulatory sequence with either an intact nar operon or a nar::lacZ fusion. The expression of the plasmids with deletions were determined in a strain with wild type fnr and narL loci, a Fnr- mutant strain and a NarL- mutant strain. These experiments demonstrated that the $5\sp\prime$ limit of the nar operon lies at about $-210$ bp from the transcription start site. The region required for anaerobic induction by the fnr gene product is located around $-60$ bp. Two putative narL recognition sites were identified, one of which is around $-200$ and another immediately adjacent to the fnr recognition region. The deletion of the sequences around $-200$ rendered the remaining narL complex repressive and thus decreased the expression of nar operon, suggesting that the two potential narL sites interact with each other over a significant length of DNA. ^
Resumo:
Prevalence and genetic relatedness were determined for third-generation cephalosporin-resistant Escherichia coli (3GC-R-Ec) detected in Swiss beef, veal, pork, and poultry retail meat. Samples from meat-packing plants (MPPs) processing 70% of the slaughtered animals in Switzerland were purchased at different intervals between April and June 2013 and analyzed. Sixty-nine 3GC-R-Ec isolates were obtained and characterized by microarray, PCR/DNA sequencing, Multi Locus Sequence Typing (MLST), and plasmid replicon typing. Plasmids of selected strains were transformed by electroporation into E. coli TOP10 cells and analyzed by plasmid MLST. The prevalence of 3GC-R-Ec was 73.3% in chicken and 2% in beef meat. No 3GC-R-Ec were found in pork and veal. Overall, the blaCTX-M-1 (79.4%), blaCMY-2 (17.6%), blaCMY-4 (1.5%), and blaSHV-12 (1.5%) β-lactamase genes were detected, as well as other genes conferring resistance to chloramphenicol (cmlA1-like), sulfonamides (sul), tetracycline (tet), and trimethoprim (dfrA). The 3GC-R-Ec from chicken meat often harbored virulence genes associated with avian pathogens. Plasmid incompatibility (Inc) groups IncI1, IncFIB, IncFII, and IncB/O were the most frequent. A high rate of clonality (e.g., ST1304, ST38, and ST93) among isolates from the same MPPs suggests that strains persist at the plant and spread to meat at the carcass-processing stage. Additionally, the presence of the blaCTX-M-1 gene on an IncI1 plasmid sequence type 3 (IncI1/pST3) in genetically diverse strains indicates interstrain spread of an epidemic plasmid. The blaCMY-2 and blaCMY-4 genes were located on IncB/O plasmids. This study represents the first comprehensive assessment of 3GC-R-Ec in meat in Switzerland. It demonstrates the need for monitoring contaminants and for the adaptation of the Hazard Analysis and Critical Control Point concept to avoid the spread of multidrug-resistant bacteria through the food chain.
Resumo:
A new gene, sul3, which specifies a 263-amino-acid protein similar to a dihydropteroate synthase encoded by the 54-kb conjugative plasmid pVP440 from Escherichia coli was characterized. Expression of the cloned sul3 gene conferred resistance to sulfamethoxazole on E. coli. Two copies of the insertion element IS15Delta/26 flanked the region containing sul3. The sul3 gene was detected in one-third of the sulfonamide-resistant pathogenic E. coli isolates from pigs in Switzerland.
Resumo:
The mdt(A) gene, previously designated mef214, from Lactococcus lactis subsp. lactis plasmid pK214 encodes a protein [Mdt(A) (multiple drug transporter)] with 12 putative transmembrane segments (TMS) that contain typical motifs conserved among the efflux proteins of the major facilitator superfamily. However, it also has two C-motifs (conserved in the fifth TMS of the antiporters) and a putative ATP-binding site. Expression of the cloned mdt(A) gene decreased susceptibility to macrolides, lincosamides, streptogramins, and tetracyclines in L. lactis and Escherichia coli, but not in Enterococcus faecalis or in Staphylococcus aureus. Glucose-dependent efflux of erythromycin and tetracycline was demonstrated in L. lactis and in E. coli.
Resumo:
BACKGROUND International travel contributes to the worldwide spread of multidrug resistant Gram-negative bacteria. Rates of travel-related faecal colonization with extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae vary for different destinations. Especially travellers returning from the Indian subcontinent show high colonization rates. So far, nothing is known about region-specific risk factors for becoming colonized. METHODS An observational prospective multicentre cohort study investigated travellers to South Asia. Before and after travelling, rectal swabs were screened for third-generation cephalosporin- and carbapenem-resistant Enterobacteriaceae. Participants completed questionnaires to identify risk factors for becoming colonized. Covariates were assessed univariately, followed by a multivariate regression. RESULTS Hundred and seventy persons were enrolled, the largest data set on travellers to the Indian subcontinent so far. The acquired colonization rate with ESBL-producing Escherichia coli overall was 69.4% (95% CI 62.1-75.9%), being highest in travellers returning from India (86.8%; 95% CI 78.5-95.0%) and lowest in travellers returning from Sri Lanka (34.7%; 95% CI 22.9-48.7%). Associated risk factors were travel destination, length of stay, visiting friends and relatives, and eating ice cream and pastry. CONCLUSIONS High colonization rates with ESBL-producing Enterobacteriaceae were found in travellers returning from South Asia. Though risk factors were identified, a more common source, i.e. environmental, appears to better explain the high colonization rates.
Resumo:
We describe a rational approach to simultaneously test Escherichia coli strains for the presence of known virulence genes in a reverse dot blot procedure. Specific segments of virulence genes of E. coli designed to have similar hybridization parameters were subcloned on plasmids and subsequently amplified by PCR as unlabeled probes in amounts sufficient to be bound to nylon membranes. Various pathogenic isolates and laboratory strains of E. coli were probed for the presence of virulence genes by labeling the genomic DNA of these strains with digoxigenin and then hybridizing them to the prepared nylon membranes. These hybridization results demonstrated that besides the E. coli K-12 safety strain derivatives, E. coli B and C strains are also devoid of genes encoding any of the investigated virulence factors. In contrast, pathogenic E. coli control strains, used to evaluate the method, showed typical hybridization patterns. The described probes and their easy application on a single filter were shown to provide a useful tool for the safety assessment of E. coli strains to be used as hosts in biotechnological processes. This approach might also be used for the identification and characterization of clinically significant E. coli isolates from human and animal species.
Resumo:
This study was undertaken to evaluate the specificity and efficiency of different methods to detect Escherichia coli K-12 strains. Another aim was to determine the frequency of E. coli K-12 strains among wild-type E. coli isolates from different sources. The detection of K-12 strains was performed both genotypically by K-12 specific polymerase chain reaction (PCR) and on the basis of phenotypical tests. In addition, the genome structures of E. coli strains were characterized by pulsed-field gel electrophoresis (PFGE). The most specific results could be obtained by the genotypical tests PCR and PFGE as well as by the K-12 specific phage assay. In total, 131 stool and 95 water isolates as well as 14 K-12 derivatives were examined by the different methods. No E. coli K-12 strains were detected among the wild-type isolates.
Resumo:
Enteric Escherichia coli infections are a highly relevant cause of disease and death in young pigs. Breeding genetically resistant pigs is an economical and sustainable method of prevention. Resistant pigs are protected against colonization of the intestine through the absence of receptors for the bacterial fimbriae, which mediate adhesion to the intestinal surface. The present work aimed at elucidation of the mode of inheritance of the F4ad receptor which according to former investigations appeared quite confusing. Intestines of 489 pigs of an experimental herd were examined by a microscopic adhesion test modified in such a manner that four small intestinal sites instead of one were tested for adhesion of the fimbrial variant F4ad. Segregation analysis revealed that the mixed inheritance model explained our data best. The heritability of the F4ad phenotype was estimated to be 0.7±0.1. There are no relations to the strong receptors for variants F4ab and F4ac. Targeted matings allowed the discrimination between two F4ad receptors, that is, a fully adhesive receptor (F4adRFA) expressed on all enterocytes and at all small intestinal sites, and a partially adhesive receptor (F4adRPA) variably expressed at different sites and often leading to partial bacterial adhesion. In pigs with both F4ad receptors, the F4adRPA receptor is masked by the F4adRFA. The hypothesis that F4adRFA must be encoded by at least two complementary or epistatic dominant genes is supported by the Hardy-Weinberg equilibrium statistics. The F4adRPA receptor is inherited as a monogenetic dominant trait. A comparable partially adhesive receptor for variant F4ab (F4abRPA) was also observed but the limited data did not allow a prediction of the mode of inheritance. Pigs were therefore classified into one of eight receptor phenotypes: A1 (F4abRFA/F4acR+/F4adRFA); A2 (F4abRFA/F4acR+/F4adRPA); B (F4abRFA/F4acR+/F4adR-); C1 (F4abRPA/F4acR-/F4adRFA); C2 (F4abRPA/F4acR-/F4adRPA); D1 (F4abR-/F4acR-/F4adRFA); D2 (F4abR-/F4acR-/F4adRPA); E (F4abR-/F4acR-/F4adR-).