938 resultados para Escape from Vehicle.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Motor vehicle theft costs dearly to the Australian economy. Conservative estimates have put the annual cost of this form of illegal activity at 654 million during 1996. A number of initiatives aimed at reducing the incidence and cost of car theft have been implemented in recent years, yet statistics indicate that car theft is on the increase. Several authors have proposed an integrated approach to the regulation of markets for stolen property. Understanding property crime as a market is central to identifying approaches to its control. This paper discusses an industry model of crime and develops it on Australian data. Our model is an adaptation of one originally proposed by Vandeale (1978). It considers a production sector that uses inputs from a market of illegal labour to generate a supply of illegal goods that are traded in a product market. These sectors interact with each other and with a criminal justice sector. The model is applied to the analysis of car theft in Queensland.
Resumo:
The scleractinian coral Lophelia pertusa has been the focus of deep-sea research since the recognition of the vast extent of coral reefs in North Atlantic waters two decades ago, long after their existence was mentioned by fishermen. These reefs where shown to provide habitat, concentrate biomass and act as feeding or nursery grounds for many species, including those targeted by commercial fisheries. Thus, the attention given to this cold-water coral (CWC) species from researchers and the wider public has increased. Consequently, new research programs triggered research to determine the full extent of the corals geographic distribution and ecological dynamics of “Lophelia reefs”. The present study is based on a systematic standardised sampling design to analyse the distribution and coverage of CWC reefs along European margins from the Bay of Biscay to Iceland. Based on Remotely Operated Vehicle (ROV) image analysis, we report an almost systematic occurrence of Madrepora oculata in association with L. pertusa with similar abundances of both species within explored reefs, despite a tendency of increased abundance of L. pertusa compared to M. oculata toward higher latitudes. This systematic association occasionally reached the colony scale, with “twin” colonies of both species often observed growing next to each other when isolated structures were occurring off-reefs. Finally, several “false chimaera” were observed within reefs, confirming that colonial structures can be “coral bushes” formed by an accumulation of multiple colonies even at the inter-specific scale, with no need for self-recognition mechanisms. Thus, we underline the importance of the hitherto underexplored M. oculata in the Eastern Atlantic, re-establishing a more balanced view that both species and their yet unknown interactions are required to better elucidate the ecology, dynamics and fate of European CWC reefs in a changing environment.
Resumo:
The Neolithic was marked by a transition from small and relatively egalitarian groups, to much larger groups with increased stratification. But the dynamics of this remain poorly understood. It is hard to see how despotism can arise without coercion, yet coercion could not easily have occurred in an egalitarian setting. Using a quanti- tative model of evolution in a patch-structured population, we demonstrate that the interaction between demographic and ecological factors can overcome this conundrum. We model the co-evolution of individual preferences for hierarchy alongside the degree of despotism of leaders, and the dispersal preferences of followers. We show that voluntary leadership without coercion can evolve in small groups, when leaders help to solve coordination problems related to resource production. An example is coordinating construction of an irrigation system. Our model predicts that the transition to larger despotic groups will then occur when: 1. surplus resources lead to demographic expansion of groups, removing the viability of an acephalous niche in the same area and so locking individuals into hierarchy; 2. high dispersal costs limit followers' ability to escape a despot. Empirical evidence suggests that these conditions were likely met for the first time during the subsistence intensification of the Neolithic.
Resumo:
Simultaneous Localization and Mapping (SLAM) is a procedure used to determine the location of a mobile vehicle in an unknown environment, while constructing a map of the unknown environment at the same time. Mobile platforms, which make use of SLAM algorithms, have industrial applications in autonomous maintenance, such as the inspection of flaws and defects in oil pipelines and storage tanks. A typical SLAM consists of four main components, namely, experimental setup (data gathering), vehicle pose estimation, feature extraction, and filtering. Feature extraction is the process of realizing significant features from the unknown environment such as corners, edges, walls, and interior features. In this work, an original feature extraction algorithm specific to distance measurements obtained through SONAR sensor data is presented. This algorithm has been constructed by combining the SONAR Salient Feature Extraction Algorithm and the Triangulation Hough Based Fusion with point-in-polygon detection. The reconstructed maps obtained through simulations and experimental data with the fusion algorithm are compared to the maps obtained with existing feature extraction algorithms. Based on the results obtained, it is suggested that the proposed algorithm can be employed as an option for data obtained from SONAR sensors in environment, where other forms of sensing are not viable. The algorithm fusion for feature extraction requires the vehicle pose estimation as an input, which is obtained from a vehicle pose estimation model. For the vehicle pose estimation, the author uses sensor integration to estimate the pose of the mobile vehicle. Different combinations of these sensors are studied (e.g., encoder, gyroscope, or encoder and gyroscope). The different sensor fusion techniques for the pose estimation are experimentally studied and compared. The vehicle pose estimation model, which produces the least amount of error, is used to generate inputs for the feature extraction algorithm fusion. In the experimental studies, two different environmental configurations are used, one without interior features and another one with two interior features. Numerical and experimental findings are discussed. Finally, the SLAM algorithm is implemented along with the algorithms for feature extraction and vehicle pose estimation. Three different cases are experimentally studied, with the floor of the environment intentionally altered to induce slipping. Results obtained for implementations with and without SLAM are compared and discussed. The present work represents a step towards the realization of autonomous inspection platforms for performing concurrent localization and mapping in harsh environments.
Resumo:
This dissertation proposes statistical methods to formulate, estimate and apply complex transportation models. Two main problems are part of the analyses conducted and presented in this dissertation. The first method solves an econometric problem and is concerned with the joint estimation of models that contain both discrete and continuous decision variables. The use of ordered models along with a regression is proposed and their effectiveness is evaluated with respect to unordered models. Procedure to calculate and optimize the log-likelihood functions of both discrete-continuous approaches are derived, and difficulties associated with the estimation of unordered models explained. Numerical approximation methods based on the Genz algortithm are implemented in order to solve the multidimensional integral associated with the unordered modeling structure. The problems deriving from the lack of smoothness of the probit model around the maximum of the log-likelihood function, which makes the optimization and the calculation of standard deviations very difficult, are carefully analyzed. A methodology to perform out-of-sample validation in the context of a joint model is proposed. Comprehensive numerical experiments have been conducted on both simulated and real data. In particular, the discrete-continuous models are estimated and applied to vehicle ownership and use models on data extracted from the 2009 National Household Travel Survey. The second part of this work offers a comprehensive statistical analysis of free-flow speed distribution; the method is applied to data collected on a sample of roads in Italy. A linear mixed model that includes speed quantiles in its predictors is estimated. Results show that there is no road effect in the analysis of free-flow speeds, which is particularly important for model transferability. A very general framework to predict random effects with few observations and incomplete access to model covariates is formulated and applied to predict the distribution of free-flow speed quantiles. The speed distribution of most road sections is successfully predicted; jack-knife estimates are calculated and used to explain why some sections are poorly predicted. Eventually, this work contributes to the literature in transportation modeling by proposing econometric model formulations for discrete-continuous variables, more efficient methods for the calculation of multivariate normal probabilities, and random effects models for free-flow speed estimation that takes into account the survey design. All methods are rigorously validated on both real and simulated data.
Resumo:
The goal of Vehicle Routing Problems (VRP) and their variations is to transport a set of orders with the minimum number of vehicles at least cost. Most approaches are designed to solve specific problem variations independently, whereas in real world applications, different constraints are handled concurrently. This research extends solutions obtained for the traveling salesman problem with time windows to a much wider class of route planning problems in logistics. The work describes a novel approach that: supports a heterogeneous fleet of vehicles dynamically reduces the number of vehicles respects individual capacity restrictions satisfies pickup and delivery constraints takes Hamiltonian paths (rather than cycles) The proposed approach uses Monte-Carlo Tree Search and in particular Nested Rollout Policy Adaptation. For the evaluation of the work, real data from the industry was obtained and tested and the results are reported.
Resumo:
In the standard Vehicle Routing Problem (VRP), we route a fleet of vehicles to deliver the demands of all customers such that the total distance traveled by the fleet is minimized. In this dissertation, we study variants of the VRP that minimize the completion time, i.e., we minimize the distance of the longest route. We call it the min-max objective function. In applications such as disaster relief efforts and military operations, the objective is often to finish the delivery or the task as soon as possible, not to plan routes with the minimum total distance. Even in commercial package delivery nowadays, companies are investing in new technologies to speed up delivery instead of focusing merely on the min-sum objective. In this dissertation, we compare the min-max and the standard (min-sum) objective functions in a worst-case analysis to show that the optimal solution with respect to one objective function can be very poor with respect to the other. The results motivate the design of algorithms specifically for the min-max objective. We study variants of min-max VRPs including one problem from the literature (the min-max Multi-Depot VRP) and two new problems (the min-max Split Delivery Multi-Depot VRP with Minimum Service Requirement and the min-max Close-Enough VRP). We develop heuristics to solve these three problems. We compare the results produced by our heuristics to the best-known solutions in the literature and find that our algorithms are effective. In the case where benchmark instances are not available, we generate instances whose near-optimal solutions can be estimated based on geometry. We formulate the Vehicle Routing Problem with Drones and carry out a theoretical analysis to show the maximum benefit from using drones in addition to trucks to reduce delivery time. The speed-up ratio depends on the number of drones loaded onto one truck and the speed of the drone relative to the speed of the truck.
Resumo:
Suburban lifestyle is popular among American families, although it has been criticized for encouraging automobile use through longer commutes, causing heavy traffic congestion, and destroying open spaces (Handy, 2005). It is a serious concern that people living in low-density suburban areas suffer from high automobile dependency and lower rates of daily physical activity, both of which result in social, environmental and health-related costs. In response to such concerns, researchers have investigated the inter-relationships between urban land-use pattern and travel behavior within the last few decades and suggested that land-use planning can play a significant role in changing travel behavior in the long-term. However, debates regarding the magnitude and efficiency of the effects of land-use on travel patterns have been contentious over the years. Changes in built-environment patterns is potentially considered a long-term panacea for automobile dependency and traffic congestion, despite some researchers arguing that the effects of land-use on travel behavior are minor, if any. It is still not clear why the estimated impact is different in urban areas and how effective a proposed land-use change/policy is in changing certain travel behavior. This knowledge gap has made it difficult for decision-makers to evaluate land-use plans and policies. In addition, little is known about the influence of the large-scale built environment. In the present dissertation, advanced spatial-statistical tools have been employed to better understand and analyze these impacts at different scales, along with analyzing transit-oriented development policy at both small and large scales. The objective of this research is to: (1) develop scalable and consistent measures of the overall physical form of metropolitan areas; (2) re-examine the effects of built-environment factors at different hierarchical scales on travel behavior, and, in particular, on vehicle miles traveled (VMT) and car ownership; and (3) investigate the effects of transit-oriented development on travel behavior. The findings show that changes in built-environment at both local and regional levels could be very influential in changing travel behavior. Specifically, the promotion of compact, mixed-use built environment with well-connected street networks reduces VMT and car ownership, resulting in less traffic congestion, air pollution, and energy consumption.
Resumo:
This dissertation analyzes how individuals respond to the introduction of taxation aimed to reduce vehicle pollution, greenhouse gases and traffic. The first chapter analyzes a vehicle registration tax based on emissions of carbon dioxide (CO2), a major greenhouse gas, adopted in the UK in 2001 and subject to major changes in the following years. I identify the impact of the policy on new vehicle registrations and carbon emissions, compared to alternative measures. Results show that consumers respond to the tax by purchasing cleaner cars, but a carbon tax generating the same revenue would further reduce carbon emissions. The second chapter looks at a pollution charge (polluting vehicles pay to enter the city) and a congestion charge (all vehicles pay) adopted in 2008 and 2011 in Milan, Italy, and how they affected the concentration of nitrogen dioxides (NOx). I use data from pollution monitoring stations to measure the change between areas adopting the tax and other areas. Results show that in the first quarter of their introduction, both policies decreased NOx concentration in a range of -8% and -5%, but the effect declines over time, especially in the case of the pollution charge. The third chapter examines a trial conducted in 2005 in the Seattle, WA, area, in which vehicle trips by 276 volunteer households were recorded with a GPS device installed in their vehicles. Households received a monetary endowment which they used to pay a toll for each mile traveled: the toll varied with the time of the day, the day of the week and the type of road used. Using information on driving behavior, I show that in the first week a $0.10 toll per mile reduces the number of miles driven by around 7%, but the effect lasts only few weeks at most. The effect is mainly driven by a reduction in highway miles during trips from work to home, and it is strongly influenced by past driving behavior, income, the size of the initial endowment and the number of children in the household.
Resumo:
Recently, the interest of the automotive market for hybrid vehicles has increased due to the more restrictive pollutants emissions legislation and to the necessity of decreasing the fossil fuel consumption, since such solution allows a consistent improvement of the vehicle global efficiency. The term hybridization regards the energy flow in the powertrain of a vehicle: a standard vehicle has, usually, only one energy source and one energy tank; instead, a hybrid vehicle has at least two energy sources. In most cases, the prime mover is an internal combustion engine (ICE) while the auxiliary energy source can be mechanical, electrical, pneumatic or hydraulic. It is expected from the control unit of a hybrid vehicle the use of the ICE in high efficiency working zones and to shut it down when it is more convenient, while using the EMG at partial loads and as a fast torque response during transients. However, the battery state of charge may represent a limitation for such a strategy. That’s the reason why, in most cases, energy management strategies are based on the State Of Charge, or SOC, control. Several studies have been conducted on this topic and many different approaches have been illustrated. The purpose of this dissertation is to develop an online (usable on-board) control strategy in which the operating modes are defined using an instantaneous optimization method that minimizes the equivalent fuel consumption of a hybrid electric vehicle. The equivalent fuel consumption is calculated by taking into account the total energy used by the hybrid powertrain during the propulsion phases. The first section presents the hybrid vehicles characteristics. The second chapter describes the global model, with a particular focus on the energy management strategies usable for the supervisory control of such a powertrain. The third chapter shows the performance of the implemented controller on a NEDC cycle compared with the one obtained with the original control strategy.
Resumo:
The purpose of this study was to determine whether there was a relationship between pressure to perform on state mandated, high-stakes tests and the rate of student escape behavior defined as the number of school suspensions and absences. The state assigned grade of a school was used as a surrogate measure of pressure with the assumption that pressure increased as the school grade decreased. Student attendance and suspension data were gathered from all 33 of the regular public high schools in Miami-Dade County Public Schools. The research questions were: Is the number of suspensions highest in the third quarter, when most FCAT preparation takes place for each of the 3 school years 2007-08 through 2009-10? How accurately does the high school’s grade predict the number of suspensions and number of absences during each of the 4 school years 2005-06 through 2008-09? The research questions were answered using repeated measures analysis of variance for research question #1 and non-linear multiple regression for research question #2. No significant difference could be found between the numbers of suspensions in each of the grading periods nor was there a relationship between the number of suspensions and school grade. A statistically significant relationship was found between student attendance and school grade. When plotted, this relationship was found to be quadratic in nature and formed a loose inverted U for each of the four years during which data were collected. This indicated that students in very high and very low performing schools had low levels of absences while those in the midlevel of the distribution of school performance (C schools) had the greatest rates of absence. Identifying a relationship between the pressures associated with high stakes testing and student escape behavior suggests that it might be useful for building administrators to reevaluate test preparation activities and procedures being used in their building and to include anxiety reducing strategies. As a relationship was found, it sets the foundation for future studies to identify whether testing related activities are impacting some students emotionally and are causing unintended consequences of testing mandates.
Resumo:
Vehicle fuel consumption and emission are two important effectiveness measurements of sustainable transportation development. Pavement plays an essential role in goals of fuel economy improvement and greenhouse gas (GHG) emission reduction. The main objective of this dissertation study is to experimentally investigate the effect of pavement-vehicle interaction (PVI) on vehicle fuel consumption under highway driving conditions. The goal is to provide a better understanding on the role of pavement in the green transportation initiates. Four study phases are carried out. The first phase involves a preliminary field investigation to detect the fuel consumption differences between paired flexible-rigid pavement sections with repeat measurements. The second phase continues the field investigation by a more detailed and comprehensive experimental design and independently investigates the effect of pavement type on vehicle fuel consumption. The third study phase calibrates the HDM-IV fuel consumption model with data collected in the second field phase. The purpose is to understand how pavement deflection affects vehicle fuel consumption from a mechanistic approach. The last phase applies the calibrated HDM-IV model to Florida’s interstate network and estimates the total annual fuel consumption and CO2 emissions on different scenarios. The potential annual fuel savings and emission reductions are derived based on the estimation results. Statistical results from the two field studies both show fuel savings on rigid pavement compared to flexible pavement with the test conditions specified. The savings derived from the first phase are 2.50% for the passenger car at 112km/h, and 4.04% for 18-wheel tractor-trailer at 93km/h. The savings resulted from the second phase are 2.25% and 2.22% for passenger car at 93km/h and 112km/h, and 3.57% and 3.15% for the 6-wheel medium-duty truck at 89km/h and 105km/h. All savings are statistically significant at 95% Confidence Level (C.L.). From the calibrated HDM-IV model, one unit of pavement deflection (1mm) on flexible pavement can cause an excess fuel consumption by 0.234-0.311 L/100km for the passenger car and by 1.123-1.277 L/100km for the truck. The effect is more evident at lower highway speed than at higher highway speed. From the network level estimation, approximately 40 million gallons of fuel (combined gasoline and diesel) and 0.39 million tons of CO2 emission can be saved/reduced annually if all Florida’s interstate flexible pavement are converted to rigid pavement with the same roughness levels. Moreover, each 1-mile of flexible-rigid conversion can result in a reduction of 29 thousand gallons of fuel and 258 tons of CO2 emission yearly.
Resumo:
Frequency, time and places of charging and discharging have critical impact on the Quality of Experience (QoE) of using Electric Vehicles (EVs). EV charging and discharging scheduling schemes should consider both the QoE of using EV and the load capacity of the power grid. In this paper, we design a traveling plan-aware scheduling scheme for EV charging in driving pattern and a cooperative EV charging and discharging scheme in parking pattern to improve the QoE of using EV and enhance the reliability of the power grid. For traveling planaware scheduling, the assignment of EVs to Charging Stations (CSs) is modeled as a many-to-one matching game and the Stable Matching Algorithm (SMA) is proposed. For cooperative EV charging and discharging in parking pattern, the electricity exchange between charging EVs and discharging EVs in the same parking lot is formulated as a many-to-many matching model with ties, and we develop the Pareto Optimal Matching Algorithm (POMA). Simulation results indicates that the SMA can significantly improve the average system utility for EV charging in driving pattern, and the POMA can increase the amount of electricity offloaded from the grid which is helpful to enhance the reliability of the power grid.
Resumo:
The present doctoral thesis discusses the ways to improve the performance of driving simulator, provide objective measures for the road safety evaluation methodology based on driver’s behavior and response and investigates the drivers' adaptation to the driving assistant systems. The activities are divided into two macro areas; the driving simulation studies and on-road experiments. During the driving simulation experimentation, the classical motion cueing algorithm with logarithmic scale was implemented in the 2DOF motion cueing simulator and the motion cues were found desirable by the participants. In addition, it found out that motion stimuli could change the behaviour of the drivers in terms of depth/distance perception. During the on-road experimentations, The driver gaze behaviour was investigated to find the objective measures on the visibility of the road signs and reaction time of the drivers. The sensor infusion and the vehicle monitoring instruments were found useful for an objective assessment of the pavement condition and the drivers’ performance. In the last chapter of the thesis, the safety assessment during the use of level 1 automated driving “ACC” is discussed with the simulator and on-road experiment. The drivers’ visual behaviour was investigated in both studies with innovative classification method to find the epochs of the distraction of the drivers. The behavioural adaptation to ACC showed that drivers may divert their attention away from the driving task to engage in secondary, non-driving-related tasks.