991 resultados para Error-resilient Applications
Resumo:
Electric motors driven by adjustable-frequency converters may produce periodic excitation forces that can cause torque and speed ripple. Interaction with the driven mechanical system may cause undesirable vibrations that affect the system performance and lifetime. Direct drives in sensitive applications, such as elevators or paper machines, emphasize the importance of smooth torque production. This thesis analyses the non-idealities of frequencyconverters that produce speed and torque ripple in electric drives. The origin of low order harmonics in speed and torque is examined. It is shown how different current measurement error types affect the torque. As the application environment, direct torque control (DTC) method is applied to permanent magnet synchronous machines (PMSM). A simulation model to analyse the effect of the frequency converter non-idealities on the performance of the electric drives is created. Themodel enables to identify potential problems causing torque vibrations and possibly damaging oscillations in electrically driven machine systems. The model is capable of coupling with separate simulation software of complex mechanical loads. Furthermore, the simulation model of the frequency converter's control algorithm can be applied to control a real frequency converter. A commercial frequencyconverter with standard software, a permanent magnet axial flux synchronous motor and a DC motor as the load are used to detect the effect of current measurement errors on load torque. A method to reduce the speed and torque ripple by compensating the current measurement errors is introduced. The method is based on analysing the amplitude of a selected harmonic component of speed as a function oftime and selecting a suitable compensation alternative for the current error. The speed can be either measured or estimated, so the compensation method is applicable also for speed sensorless drives. The proposed compensation method is tested with a laboratory drive, which consists of commercial frequency converter hardware with self-made software and a prototype PMSM. The speed and torque rippleof the test drive are reduced by applying the compensation method. In addition to the direct torque controlled PMSM drives, the compensation method can also beapplied to other motor types and control methods.
Resumo:
The optimization of most pesticide and fertilizer applications is based on overall grove conditions. In this work we measurements. Recently, Wei [9, 10] used a terrestrial propose a measurement system based on a ground laser scanner to LIDAR to measure tree height, width and volume developing estimate the volume of the trees and then extrapolate their foliage a set of experiments to evaluate the repeatability and surface in real-time. Tests with pear trees demonstrated that the accuracy of the measurements, obtaining a coefficient of relation between the volume and the foliage can be interpreted as variation of 5.4% and a relative error of 4.4% in the linear with a coefficient of correlation (R) of 0.81 and the foliar estimation of the volume but without real-time capabilities. surface can be estimated with an average error less than 5 %.
A priori parameterisation of the CERES soil-crop models and tests against several European data sets
Resumo:
Mechanistic soil-crop models have become indispensable tools to investigate the effect of management practices on the productivity or environmental impacts of arable crops. Ideally these models may claim to be universally applicable because they simulate the major processes governing the fate of inputs such as fertiliser nitrogen or pesticides. However, because they deal with complex systems and uncertain phenomena, site-specific calibration is usually a prerequisite to ensure their predictions are realistic. This statement implies that some experimental knowledge on the system to be simulated should be available prior to any modelling attempt, and raises a tremendous limitation to practical applications of models. Because the demand for more general simulation results is high, modellers have nevertheless taken the bold step of extrapolating a model tested within a limited sample of real conditions to a much larger domain. While methodological questions are often disregarded in this extrapolation process, they are specifically addressed in this paper, and in particular the issue of models a priori parameterisation. We thus implemented and tested a standard procedure to parameterize the soil components of a modified version of the CERES models. The procedure converts routinely-available soil properties into functional characteristics by means of pedo-transfer functions. The resulting predictions of soil water and nitrogen dynamics, as well as crop biomass, nitrogen content and leaf area index were compared to observations from trials conducted in five locations across Europe (southern Italy, northern Spain, northern France and northern Germany). In three cases, the model’s performance was judged acceptable when compared to experimental errors on the measurements, based on a test of the model’s root mean squared error (RMSE). Significant deviations between observations and model outputs were however noted in all sites, and could be ascribed to various model routines. In decreasing importance, these were: water balance, the turnover of soil organic matter, and crop N uptake. A better match to field observations could therefore be achieved by visually adjusting related parameters, such as field-capacity water content or the size of soil microbial biomass. As a result, model predictions fell within the measurement errors in all sites for most variables, and the model’s RMSE was within the range of published values for similar tests. We conclude that the proposed a priori method yields acceptable simulations with only a 50% probability, a figure which may be greatly increased through a posteriori calibration. Modellers should thus exercise caution when extrapolating their models to a large sample of pedo-climatic conditions for which they have only limited information.
Resumo:
In recent years, Semantic Web (SW) research has resulted in significant outcomes. Various industries have adopted SW technologies, while the ‘deep web’ is still pursuing the critical transformation point, in which the majority of data found on the deep web will be exploited through SW value layers. In this article we analyse the SW applications from a ‘market’ perspective. We are setting the key requirements for real-world information systems that are SW-enabled and we discuss the major difficulties for the SW uptake that has been delayed. This article contributes to the literature of SW and knowledge management providing a context for discourse towards best practices on SW-based information systems.
Resumo:
The use of contextual information in mobile devices is receiving increasing attention in mobile and ubiquitous computing research. An important requirement for mobile development today is that devices should be able to interact with the context. In this paper we present a series of contributions regarding previous work on context-awareness. In the first place, we describe a client-server architecture that provides a mechanism for preparing target non context-aware applications in order to be delivered as context-aware applications in a semi-automatic way. Secondly, the framework used in the server to instantiate specific components for context-awareness, the Implicit Plasticity Framework, provides independence from the underlying mobile technology used in client device, as it is shown in the case studies presented. Finally, proposed infrastructure deals with the interaction among different context constraints provided by diverse sensors. All of these contributions are extensions to the infrastructure based on the Dichotomic View of plasticity, which now offers multi-purpose support.
Resumo:
The questions studied in this thesis are centered around the moment operators of a quantum observable, the latter being represented by a normalized positive operator measure. The moment operators of an observable are physically relevant, in the sense that these operators give, as averages, the moments of the outcome statistics for the measurement of the observable. The main questions under consideration in this work arise from the fact that, unlike a projection valued observable of the von Neumann formulation, a general positive operator measure cannot be characterized by its first moment operator. The possibility of characterizing certain observables by also involving higher moment operators is investigated and utilized in three different cases: a characterization of projection valued measures among all the observables is given, a quantization scheme for unbounded classical variables using translation covariant phase space operator measures is presented, and, finally, a mathematically rigorous description is obtained for the measurements of rotated quadratures and phase space observables via the high amplitude limit in the balanced homodyne and eight-port homodyne detectors, respectively. In addition, the structure of the covariant phase space operator measures, which is essential for the above quantization, is analyzed in detail in the context of a (not necessarily unimodular) locally compact group as the phase space.
Resumo:
The evaluation of investments in advanced technology is one of the most important decision making tasks. The importance is even more pronounced considering the huge budget concerning the strategic, economic and analytic justification in order to shorten design and development time. Choosing the most appropriate technology requires an accurate and reliable system that can lead the decision makers to obtain such a complicated task. Currently, several Information and Communication Technologies (ICTs) manufacturers that design global products are seeking local firms to act as their sales and services representatives (called distributors) to the end user. At the same time, the end user or customer is also searching for the best possible deal for their investment in ICT's projects. Therefore, the objective of this research is to present a holistic decision support system to assist the decision maker in Small and Medium Enterprises (SMEs) - working either as individual decision makers or in a group - in the evaluation of the investment to become an ICT's distributor or an ICT's end user. The model is composed of the Delphi/MAH (Maximising Agreement Heuristic) Analysis, a well-known quantitative method in Group Support System (GSS), which is applied to gather the average ranking data from amongst Decision Makers (DMs). After that the Analytic Network Process (ANP) analysis is brought in to analyse holistically: it performs quantitative and qualitative analysis simultaneously. The illustrative data are obtained from industrial entrepreneurs by using the Group Support System (GSS) laboratory facilities at Lappeenranta University of Technology, Finland and in Thailand. The result of the research, which is currently implemented in Thailand, can provide benefits to the industry in the evaluation of becoming an ICT's distributor or an ICT's end user, particularly in the assessment of the Enterprise Resource Planning (ERP) programme. After the model is put to test with an in-depth collaboration with industrial entrepreneurs in Finland and Thailand, the sensitivity analysis is also performed to validate the robustness of the model. The contribution of this research is in developing a new approach and the Delphi/MAH software to obtain an analysis of the value of becoming an ERP distributor or end user that is flexible and applicable to entrepreneurs, who are looking for the most appropriate investment to become an ERP distributor or end user. The main advantage of this research over others is that the model can deliver the value of becoming an ERP distributor or end user in a single number which makes it easier for DMs to choose the most appropriate ERP vendor. The associated advantage is that the model can include qualitative data as well as quantitative data, as the results from using quantitative data alone can be misleading and inadequate. There is a need to utilise quantitative and qualitative analysis together, as can be seen from the case studies.