961 resultados para Engineering Design.
Resumo:
The first stages in the development of a new design tool, to be used by coastal engineers to improve the efficiency, analysis, design, management and operation of a wide range of coastal and harbour structures, are described. The tool is based on a two-dimensional numerical model, NEWMOTICS-2D, using the volume of fluid (VOF) method, which permits the rapid calculation of wave hydrodynamics at impermeable natural and man-made structures. The critical hydrodynamic flow processes and forces are identified together with the equations that describe these key processes. The different possible numerical approaches for the solution of these equations, and the types of numerical models currently available, are examined and assessed. Preliminary tests of the model, using comparisons with results from a series of hydraulic model test cases, are described. The results of these tests demonstrate that the VOF approach is particularly appropriate for the simulation of the dynamics of waves at coastal structures because of its flexibility in representing the complex free surfaces encountered during wave impact and breaking. The further programme of work, required to develop the existing model into a tool for use in routine engineering design, is outlined.
Resumo:
Purpose – The purpose of this paper is to identify, clarify and tabulate the various managerial issues encountered, to aid in the management of the complex health and safety concerns which occur within a confined construction site environment.
Design/methodology/approach – This is achieved through conducting extensive qualitative and qualitative research in the form of case studies, interviews and questionnaire survey.
Findings – The leading managerial issues in the management of health and safety on a confined construction site are found to be: “Difficulty to move materials around site safely”; “Lack of adequate room for the effective handling of materials”; “Difficulty in ensuring site is tidy and all plant and materials are stored safely”; “Close proximity of individuals to operation of large plant and machinery”; and joint fifth “Difficulty in ensuring proper arrangement and collection of waste materials on-site” along with “Difficulty in controlling hazardous materials and equipment on site”.
Practical implications – The resulting implication for practice of these results can be summarised by identifying that with sustained development of urban centres on a global scale, coupled with the increasing complexity of architectural designs, the majority of on-site project management professionals are faced with the onerous task of completing often intricate designs within a limited spatial environment, under strict health and safety parameters.
Originality/value – The subsequent value of the findings are such that just as on-site management professionals successfully identify the various managerial issues highlighted, the successful management of health and safety on a confined construction site is attainable.
Resumo:
The O-antigen lipopolysaccharides on bacterial surface contain variable number of oligosaccharide repeat units with their length having a modal distribution specific to the bacterial strain. The polysaccharide length distribution is controlled by the proteins called polysaccharide co-polymerases (PCPs), which are embedded in the inner membrane in Gram-negative bacteria and form homo oligomers. The 3D structures of periplasmic domains of several PCPs have been determined and provided the first insights into the possible mechanism of polysaccharide length determination mechanism. Here we review the current knowledge of structure and function of these polysaccharide length regulators.
Resumo:
The Irish Pavilion at the Venice Architecture Biennale 2012 charts a position for Irish architecture in a global culture where the modes of production of architecture are radically altered. Ireland is one of the most globalised countries in the world, yet it has developed a national culture of architecture derived from local place as a material construct. We now have to evolve our understanding in the light of the globalised nature of economic processes and architectural production which is largely dependent on internationally networked flows of products, data, and knowledge. We have just begun to represent this situation to ourselves and others. How should a global architecture be grounded culturally and philosophically? How does it position itself outside of shared national reference points?
heneghan peng architects were selected as participants because they are working across three continents on a range of competition-winning projects. Several of these are in sensitive and/or symbolic sites that include three UNESCO World Heritage sites, including the Grand Egyptian Museum in Cairo, the Giants Causeway Visitor Centre in Northern Ireland, and the new Rhine Bridge near Lorelei.
Our dialogue led us to discussing the universal languages of projective geometry and number are been shared by architects and related professionals. In the work of heneghan peng, the specific embodiment of these geometries is carefully calibrated by the choice of materials and the detailed design of their physical performance on site. The stone facade of the Giant’s Causeway Visitor Centre takes precise measure of the properties of the volcanic basalt seams from which it is hewn. The extraction of the stone is the subject of the pavilion wall drawings which record the cutting of stones to create the façade of the causeway centre.
We also identified water as an element which is shared across the different sites. Venice is a perfect place to take measure of this element which suggests links to another site – the Nile Valley which was enriched by the annual flooding of the River Nile. An ancient Egyptian rod for measuring the water level of the Nile inspired the design of the Nilometre - a responsive oscillating bench that invites visitors to balance their respective weights. This action embodies the ways of thinking that are evolving to operate in the globalised world, where the autonomous architectural object is dissolving into an expanded field of conceptual rules and systems. The bench constitutes a shifting ground located in the unstable field of Venice. It is about measurement and calibration of the weight of the body in relation to other bodies; in relation to the site of the installation; and in relation to water. The exhibit is located in the Artiglierie section of the Arsenale. Its level is calibrated against the mark of the acqua alta in the adjacent brickwork of the building which embodies a liminal moment in the fluctuating level of the lagoon.
The weights of bodies, the level of water, changes over time, are constant aspects of design across cultures and collectively they constitute a common ground for architecture - a ground shared with other design professionals. The movement of the bench required complex engineering design and active collaboration between the architects, engineers and fabricators. It is a kind of prototype – a physical object produced from digital data that explores the mathematics at play – the see-saw motion invites the observer to become a participant, to give it a test drive. It shows how a simple principle can generate complex effects that are difficult to predict and invites visitors to experiment and play with them.
Resumo:
In order to increase the utilisation of Irish timber in construction and novel engineered wood products, the mechanical and physical properties of the material must be established. For timber products used for structural applications, the fundamental properties are the modulus of elasticity, bending strength, density and dimensional stability, as these define the structural grade of the material. In order to develop engineering design models for applications such as reinforced timber, knowledge of the nonlinear stress-strain behaviour in compression is also required.
The paper presents the programme and results of an ongoing research project ‘Innovation in Irish Timber Usage’ which focuses on the characterisation of Sitka spruce as it is the most widely grown species in Ireland. In the past, a number of studies have been conducted to determine the properties of Irish-grown Sitka spruce. Nevertheless, due to the changes that have taken place in silvicultural practices since the publication of these studies, there is a need to determine how these properties have changed. This paper presents the data gathered from historical studies together with the results of an extensive test programme undertaken to characterise the properties of the present resource.
Moreover, the study preliminary examines the potential use of Irish grown Sitka spruce in novel timber products. Construction applications, such as fibre-reinforced polymer reinforced timber elements and connections, and cross-laminated timber are investigated.
Resumo:
Virtual reality is a rapidly emerging technology, driven by the computer gaming industry. The maturity of the concept, combined with modern hardware, is delivering an experience which offers a useful commercial tool for industry and educators. This article discusses the uses of virtual reality within structural engineering and provides an understanding of how it can be incorporated easily and efficiently for design purposes and beyond.
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds many applications in fields such as engineering design, economic equilibrium and mathematical programming theory itself. A queueing system model resulting from a single signalized intersection regulated by pre-timed control in traffic network is considered. The model is formulated as an MPCC problem. A MATLAB implementation based on an hyperbolic penalty function is used to solve this practical problem, computing the total average waiting time of the vehicles in all queues and the green split allocation. The problem was codified in AMPL.
Resumo:
Relatório de Estágio para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Edificações
Resumo:
Este trabalho tem como objetivo destacar a importância da utilização de software de geoengenharia no estudo das classificações de maciços rochosos nas engenharias de minas e geotécnica. Esta investigação pretendeu demonstrar a importância das classificações geomecânicas e índices geológico‐geomecânicos, tais como a Rock Mass Rating (RMR), Rock Tunnelling Quality Index (Q‐system), Surface Rock Classification (SRC), Rock Quality Designation (RQD), Geological Strength Index (GSI) and Hydro‐Potential Value (HP). Para esse efeito foi criada e desenvolvida uma calculadora geomecânica – MGC‐RocDesign|CALC: ‘Mining Geomechanics Classification systems for rock engineering design (version beta)’ – para de certa forma tornar mais simples, rápido e preciso o estudo das classificações geomecânicas sem que seja necessário recorrer manualmente às fastidiosas tabelas das classificações. A MGC‐RocDesign|CALC foi criada e desenvolvida no programa de folha de cálculo Microsoft Excel™ em linguagem Visual Basic for Applications© proporcionando o ambiente de carregamento de dados mais apelativos para o utilizador. Foi ainda integrada neste aplicativo a Calculadora Geotech|CalcTools que resulta da fusão das bases de dados ScanGeoData|BGD e SchmidtData|UCS criadas por Fonseca et al. (2010). Toda a informação foi integrada numa base de dados dinâmica associada a uma plataforma cartográfica em Sistemas de Informação Geográfica. Apresenta‐se como caso de estudo um dos trechos subterrâneos do maciço rochoso da antiga mina de volfrâmio das Aveleiras/Tibães (Mosteiro de Tibães, Braga, NW de Portugal). Além disso, apresenta‐se uma proposta de zonamento geomecânico do maciço rochoso da antiga mina das Aveleiras/Tibães com o objetivo de apoiar o dimensionamento de maciços rochosos. Por fim, apresenta‐se uma reflexão em termos de aplicabilidade, das potencialidades e das limitações da Calculadora Geomecânica MGC‐RocDesign|CALC.
Resumo:
Este trabalho tem como objetivo sublinhar a importância de um estudo geológico‐geotécnico para apoiar a cartografia geotécnica do maciço rochoso subterrâneo da antiga mina de volfrâmio das Aveleiras (Mosteiro de Tibães, Braga). Foi realizado um trabalho de campo sistemático, ao longo de uma rede de galerias subterrâneas com uma extensão aproximada de 155 m. Estas galerias são constituídas, principalmente, por rochas metassedimentares, embora aflorem rochas graníticas num pequeno trecho de uma das galerias. A técnica de amostragem linear de descontinuidades aplicada ao grau de compartimentação do maciço rochoso esteve na base de todos os dados geológicos, geotécnicos e geomecânicos. Além disso, foram coligidos e integrados os dados de campanhas de campo anteriores, realizadas entre 2006 e 2011. Foram igualmente descritos os métodos de avaliação dos dados de campo, bem como a análise estatística dos parâmetros geológico‐geotécnicos. O zonamento geotécnico do maciço rochoso das Aveleiras foi desenvolvido tendo em conta o comportamento do maciço rochoso in situ, e foi apoiado por ensaios laboratoriais de resistência do material‐rocha através do Ensaio de Carga Pontual. Apresenta‐se uma proposta preliminar de zonamento geomecânico com o objectivo de apoiar o projeto de engenharia de maciços rochosos.
Resumo:
Ship recycling has been considered as the best means to dispose off an obsolete ship. The current state of art of technology combined with the demands of sustainable developments from the global maritime industrial sector has modified the status of erstwhile ‘ship breaking’ involving ship scrap business to a modern industry undertaking dismantling of ships and recycling/reusing the dismantled products in a supply chain of pre owned product market by following the principles of recycling. Industries will have to formulate a set of best practices and blend them with the engineering activities for producing better quality products, improving the productivity and for achieving improved performances related to sustainable development. Improved performance by industries in a sustainable development perspective is accomplished only by implementing the 4E principles, ie.,. ecofriendliness, engineering efficiency, energy conservation and ergonomics in their core operations. The present study has done a comprehensive investigation into various ship recycling operations for formulating a set of best practices.Being the ultimate life cycle stage of a ship, ship recycling activities incorporate certain commercial procedures well in advance to facilitate the objectives of dismantling and recycling/reusing of various parts of the vessel. Thorough knowledge regarding these background procedures in ship recycling is essential for examining and understanding the industrial business operations associated with it. As a first step, the practices followed in merchant shipping operations regarding the decision on decommissioning have been and made available in the thesis. Brief description about the positioning methods and important preparations for the most feasible ship recycling method ie.,. beach method have been provided as a part of the outline of the background information. Available sources of guidelines, codes and rules & regulations for ship recycling have been compiled and included in the discussion.Very brief summary of practices in major ship recycling destinations has been prepared and listed for providing an overview of the global ship recycling activities. The present status of ship recycling by treating it as a full fledged engineering industry has been brought out to establish the need for looking into the development of the best practices. Major engineering attributes of ship as a unique engineering product and the significant influencing factors on her life cycle stage operations have been studied and added to the information base on ship recycling. Role of ship recycling industry as an important player in global sustainable development efforts has been reviewed by analysing the benefits of ship recycling. A brief synopsis on the state of art of ship recycling in major international ship recycling centres has also been incorporated in the backdrop knowledgebase generation on ship recycling processes.Publications available in this field have been reviewed and classified into five subject categories viz., Infrastructure for recycling yards and methods of dismantling, Rules regarding ship recycling activities, Environmental and safety aspects of ship recycling, Role of naval architects and ship classification societies, Application of information technology and Demand forecasting. The inference from the literature survey have been summarised and recorded. Noticeable observations in the inference include need of creation of a comprehensive knowledgebase on ship recycling and its effective implementation in the industry and the insignificant involvement of naval architects and shipbuilding engineers in ship recycling industry. These two important inferences and the message conveyed by them have been addressed with due importance in the subsequent part of the present study.As a part of the study the importance of demand forecasting in ship recycling has been introduced and presented. A sample input for ship recycling data for implementation of computer based methods of demand forecasting has been presented in this section of the thesis.The interdisciplinary nature of engineering processes involved in ship recycling has been identified as one of the important features of this industry. The present study has identified more than a dozen major stake holders in ship recycling having their own interests and roles. It has also been observed that most of the ship recycling activities is carried out in South East Asian countries where the beach based ship recycling is done in yards without proper infrastructure support. A model of beach based ship recycling has been developed and the roles, responsibilities and the mutual interactions of the elements of the system have been documented as a part of the study Subsequently the need of a generation of a wide knowledgebase on ship recycling activities as pointed out by the literature survey has been addressed. The information base and source of expertise required to build a broad knowledgebase on ship recycling operations have been identified and tabulated. Eleven important ship recycling processes have been identified and a brief sketch of steps involved in these processes have been examined and addressed in detail. Based on these findings, a detailed sequential disassembly process plan of ship recycling has been prepared and charted. After having established the need of best practices in ship recycling initially, the present study here identifies development of a user friendly expert system for ship recycling process as one of the constituents of the proposed best practises. A user friendly expert system has been developed for beach based ship recycling processes and is named as Ship Recycling Recommender (SRR). Two important functions of SRR, first one for the ‘Administrators’, the stake holders at the helm of the ship recycling affairs and second one for the ‘Users’, the stake holders who execute the actual dismantling have been presented by highlighting the steps involved in the execution of the software. The important output generated, ie.,. recommended practices for ship dismantling processes and safe handling information on materials present onboard have been presented with the help of ship recycling reports generated by the expert system. A brief account of necessity of having a ship recycling work content estimation as part of the best practices has been presented in the study. This is supported by a detailed work estimation schedule for the same as one of the appendices.As mentioned earlier, a definite lack of involvement of naval architect has been observed in development of methodologies for improving the status of ship recycling industry. Present study has put forward a holistic approach to review the status of ship recycling not simply as end of life activity of all ‘time expired’ vessels, but as a focal point of integrating all life cycle activities. A new engineering design philosophy targeting sustainable development of marine industrial domain, named design for ship recycling has been identified, formulated and presented. A new model of ship life cycle has been proposed by adding few stages to the traditional life cycle after analysing their critical role in accomplishing clean and safe end of life and partial dismantling of ships. Two applications of design for ship recycling viz, recyclability of ships and her products and allotment of Green Safety Index for ships have been presented as a part of implementation of the philosophy in actual practice.
Resumo:
To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.