981 resultados para Energy monitoring
Resumo:
Energy from waste (E/W) technologies in the form o f biogas plants, CHP plants and other municipal solid waste (MSW) conversion technologies, have been gaining steady ground in the provision o f energy throughout Europe and the UK. Urban Waste Water Treatment Plants (UWWTP) are utilising much o f the same biochemical processes common to these E/W plants. Previous studies on Centralised Anaerobic Digestion (CAD) within Ireland found that the legislative and economic conditions were not conducive to such an operation on the grounds o f low energy price for electric and heat energy, and due to the restrictive nature o f the allowable feedstocks. Recent changes to the Irish REFIT tariff on energy produced from Anaerobic digestion; alterations to the regulation o f the allowable use o f animal by products(ABP); the recent enactment o f the Renewable Energy D irective (09/28/EC) and a subsequent review o f the draft Biowaste Directive (2001) required that the issue o f decentralised energy production in Ireland be reassessed. In this instance the feasibility study is based on a extant rural community, centred around the village o f Woodford Co Galway. The review found that the prevailing conditions were now such that it was technically and economically feasible for this biochemical process to provide energy and waste treatment facilities at the above location. The review also outlines the last item which is preventing this process from becoming achievable, specifically the lack o f a digestate regulation on land spreading which deals specifically with biowaste. The study finds that the implementation o f the draft EU biowaste regulations, with amendments for Cr and Hg levels to match the proposed Irish regulation for compost, would ensure that Ireland has some o f the most restrictive regulations in Europe for this application. The delay in completing this piece o f legislation is preventing national energy and waste issues from being resolved in a planned and stepwise fashion. A proposed lay out for the new Integrated Waste from Energy Plant (IW/EP) is presented. Budget economic projections and alternative revenue streams are outlined. Finally a review o f the national policies regarding the Rural Development Plan (RDP), the Rural Planning Guidelines (RPG) and the National Renewable Energy Action Plan (NREAP) are examined against the relevant EU directives.
Resumo:
As manufacturers face an increasingly competitive environment, they seek out opportunities to reduce production costs without negatively affecting the yield or the quality of their finished products. The challenge of maintaining high product quality while simultaneously reducing production costs can often be met through investments in energy efficient technologies and energy efficiency practices. Energy management systems can offer both technological and best practice efficiencies in order to achieve substantial savings. A strong energy management system provides a solid foundation for an organisation to reduce production costs and improve site efficiency. The I.S EN16001 energy management standard specifies the requirements for establishing, implementing, maintaining and improving an energy management system and represents the latest best practice for energy management in Ireland. The objective of the energy management system is to establish a systematic approach for improving energy performance continuously. The I.S EN16001 standard specifies the requirements for continuous improvement through using energy more efficiently. The author analysed how GlaxoSmithKline’s (GSK) pharmaceutical manufacturing facility in Cork implemented the I.S. EN16001 energy management system model, and defined how energy saving opportunities where identified and introduced to improve efficiency performance. The author performed an extensive literature research in order to determine the current status of the pharmaceutical industry in Ireland, the processes involved in pharmaceutical manufacturing, the energy users required for pharmaceutical manufacturing and the efficiency measures that can be applied to these energy users in order to reduce energy consumption. The author then analysed how energy management standards are introduced to industry and critically analysed the driving factors for energy management performance in Ireland through case studies. Following an investigation as to how the I.S. EN16001 energy management standard is operated in GSK, a critical analysis of the performance achieved by the GSK energy management system is undertaken in order to determine if implementing the I.S EN16001 standard accelerates achieving energy savings. Since its introduction, the I.S. EN16001 model for energy management has enabled GSK to monitor, target and identify energy efficiency opportunities throughout the site. The model has put in place an energy management system that is continuously reviewed for improvement and to date has reduced GSK’s site operations cost by over 30% through technical improvements and generating energy awareness for smarter energy consumption within the GSK Cork site. Investment in I.S. EN16001 has proved to be a sound business strategy for GSK especially in today's manufacturing environment.
Resumo:
A composting Heat Extraction Unit (HEU) was designed to utilise waste heat from decaying organic matter for a variety of heating application The aim was to construct an insulated small scale, sealed, organic matter filled container. In this vessel a process fluid within embedded pipes would absorb thermal energy from the hot compost and transport it to an external heat exchanger. Experiments were conducted on the constituent parts and the final design comprised of a 2046 litre container insulated with polyurethane foam and kingspan with two arrays of qualpex piping embedded in the compost to extract heat. The thermal energy was used in horticultural trials by heating polytunnels using a radiator system during a winter/spring period. The compost derived energy was compared with conventional and renewable energy in the form of an electric fan heater and solar panel. The compost derived energy was able to raise polytunnel temperatures to 2-3°C above the control, with the solar panel contributing no thermal energy during the winter trial and the electric heater the most efficient maintaining temperature at its preset temperature of 10°C. Plants that were cultivated as performance indicators showed no significant difference in growth rates between the heat sources. A follow on experiment conducted using special growing mats for distributing compost thermal energy directly under the plants (Radish, Cabbage, Spinach and Lettuce) displayed more successful growth patterns than those in the control. The compost HEU was also used for more traditional space heating and hot water heating applications. A test space was successfully heated over two trials with varying insulation levels. Maximum internal temperature increases of 7°C and 13°C were recorded for building U-values of 1.6 and 0.53 W/m2K respectively using the HEU. The HEU successfully heated a 60 litre hot water cylinder for 32 days with maximum water temperature increases of 36.5°C recorded. Total energy recovered from the 435 Kg of compost within the HEU during the polytunnel growth trial was 76 kWh which is 3 kWh/day for the 25 days when the HEU was activated. With a mean coefficient of performance level of 6.8 calculated for the HEU the technology is energy efficient. Therefore the compost HEU developed here could be a useful renewable energy technology particularly for small scale rural dwellers and growers with access to significant quantities of organic matter
Resumo:
This project focused on the investigation and the development of a chemical sensing system for the determination of chromium Cr6+ and a bio-reactor followed by electrochemical detection at a glassy carbon electrode, for the determination of organochlorine compounds. The conjugation of Cr6+ with 1,5-diphenylcarbazide was studied at various types of electrodes such as glassy carbon, ultra-trace epoxy-graphite, chemically or un-modified carbon-paste and dropping-mercury. The cyclic voltammetric behaviour of the complex was also investigated. In addition, the possibility of developing a chemical sensor, Le. an electrochemical probe capable of sensing Cr6+ through its complexation with 1,5-diphenylacarbazide was studied. The conjugations of l-chloro-2,4-dinitrobenzene, 2,4-dichloronitrobenzene and ethacrynic, which are electrophilic organochlorine compounds, with reduced glutathione, were studied in order to test the bioreactor developed, based on the immobilisation of glutathione s-transferase. This was carried out at different types of electrodes such as glassy-carbon, gold, silver, platinum, epoxy-graphite, hangingmercury, and ferrocene-modified rotating-disc electrodes.
Resumo:
Driven by concerns about rising energy costs, security of supply and climate change a new wave of Sustainable Energy Technologies (SET’s) have been embraced by the Irish consumer. Such systems as solar collectors, heat pumps and biomass boilers have become common due to government backed financial incentives and revisions of the building regulations. However, there is a deficit of knowledge and understanding of how these technologies operate and perform under Ireland’s maritime climate. This AQ-WBL project was designed to address both these needs by developing a Data Acquisition (DAQ) system to monitor the performance of such technologies and a web-based learning environment to disseminate performance characteristics and supplementary information about these systems. A DAQ system consisting of 108 sensors was developed as part of Galway-Mayo Institute of Technology’s (GMIT’s) Centre for the Integration of Sustainable EnergyTechnologies (CiSET) in an effort to benchmark the performance of solar thermal collectors and Ground Source Heat Pumps (GSHP’s) under Irish maritime climate, research new methods of integrating these systems within the built environment and raise awareness of SET’s. It has operated reliably for over 2 years and has acquired over 25 million data points. Raising awareness of these SET’s is carried out through the dissemination of the performance data through an online learning environment. A learning environment was created to provide different user groups with a basic understanding of a SET’s with the support of performance data, through a novel 5 step learning process and two examples were developed for the solar thermal collectors and the weather station which can be viewed at http://www.kdp 1 .aquaculture.ie/index.aspx. This online learning environment has been demonstrated to and well received by different groups of GMIT’s undergraduate students and plans have been made to develop it further to support education, awareness, research and regional development.
Resumo:
Transmission of Cherenkov light through the atmosphere is strongly influenced by the optical clarity of the atmosphere and the prevailing weather conditions. The performance of telescopes measuring this light is therefore dependent on atmospheric effects. This thesis presents software and hardware developed to implement a prototype sky monitoring system for use on the proposed next-generation gamma-ray telescope array, VERITAS. The system, consisting of a CCD camera and a far-infrared pyrometer, was successfully installed and tested on the ten metre atmospheric Cherenkov imaging telescope operated by the VERITAS Collaboration at the F.L. Whipple Observatory in Arizona. The thesis also presents the results of observations of the BL Lacertae object, 1ES1959+650, made with the Whipple ten metre telescope. The observations provide evidence for TeV gamma-ray emission from the BL Lacertae object, 1ES1959+650, at a level of more than 15 standard deviations above background. This represents the first unequivocal detection of this object at TeV energies, making it only the third extragalactic source seen at such levels of significance in this energy range. The flux variability of the source on a number of timescales is also investigated.
Resumo:
Univariate statistical control charts, such as the Shewhart chart, do not satisfy the requirements for process monitoring on a high volume automated fuel cell manufacturing line. This is because of the number of variables that require monitoring. The risk of elevated false alarms, due to the nature of the process being high volume, can present problems if univariate methods are used. Multivariate statistical methods are discussed as an alternative for process monitoring and control. The research presented is conducted on a manufacturing line which evaluates the performance of a fuel cell. It has three stages of production assembly that contribute to the final end product performance. The product performance is assessed by power and energy measurements, taken at various time points throughout the discharge testing of the fuel cell. The literature review performed on these multivariate techniques are evaluated using individual and batch observations. Modern techniques using multivariate control charts on Hotellings T2 are compared to other multivariate methods, such as Principal Components Analysis (PCA). The latter, PCA, was identified as the most suitable method. Control charts such as, scores, T2 and DModX charts, are constructed from the PCA model. Diagnostic procedures, using Contribution plots, for out of control points that are detected using these control charts, are also discussed. These plots enable the investigator to perform root cause analysis. Multivariate batch techniques are compared to individual observations typically seen on continuous processes. Recommendations, for the introduction of multivariate techniques that would be appropriate for most high volume processes, are also covered.
Resumo:
This thesis describes a search for very high energy (VHE) gamma-ray emission from the starburst galaxy IC 342. The analysis was based on data from the 2003 — 2004 observing season recorded using the Whipple 10-metre imaging atmospheric Cherenkov telescope located on Mount Hopkins in southern Arizona. IC 342 may be classed as a non-blazar type galaxy and to date only a few such galaxies (M 87, Cen A, M 82 and NGC 253) have been detected as VHE gamma-ray sources. Analysis of approximately 24 hours of good quality IC 342 data, consisting entirely of ON/OFF observations, was carried out using a number of methods (standard Supercuts, optimised Supercuts, scaled optimised Supercuts and the multivariate kernel analysis technique). No evidence for TeV gamma-ray emission from IC 342 was found. The significance was 0.6 a with a nominal rate of 0.04 ± 0.06 gamma rays per minute. The flux upper limit above 600 GeV (at 99.9 % confidence) was determined to be 5.5 x 10-8 m-2 s-1, corresponding to 8 % of the Crab Nebula flux in the same energy range.
Resumo:
1
Resumo:
3
Resumo:
2
Resumo:
Monitoring, object-orientation, real-time, execution-time, scheduling
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2011
Resumo:
Network protection, distribution networks, decentralised energy resources, communication links, IEC Communication and Substation Control Standards
Resumo:
Background: The importance of measuring blood pressure before morning micturition and in the afternoon, while working, is yet to be established in relation to the accuracy of home blood pressure monitoring (HBPM). Objective: To compare two HBPM protocols, considering 24-hour ambulatory blood pressure monitoring (wakefulness ABPM) as gold-standard and measurements taken before morning micturition (BM) and in the afternoon (AM), for the best diagnosis of systemic arterial hypertension (SAH), and their association with prognostic markers. Methods: After undergoing 24-hour wakefulness ABPM, 158 participants (84 women) were randomized for 3- or 5-day HBPM. Two variations of the 3-day protocol were considered: with measurements taken before morning micturition and in the afternoon (BM+AM); and with post-morning-micturition and evening measurements (PM+EM). All patients underwent echocardiography (for left ventricular hypertrophy - LVH) and urinary albumin measurement (for microalbuminuria - MAU). Result: Kappa statistic for the diagnosis of SAH between wakefulness-ABPM and standard 3-day HBPM, 3-day HBPM (BM+AM) and (PM+EM), and 5-day HBPM were 0.660, 0.638, 0.348 and 0.387, respectively. The values of sensitivity of (BM+AM) versus (PM+EM) were 82.6% × 71%, respectively, and of specificity, 84.8% × 74%, respectively. The positive and negative predictive values were 69.1% × 40% and 92.2% × 91.2%, respectively. The comparisons of intraclass correlations for the diagnosis of LVH and MAU between (BM+AM) and (PM+EM) were 0.782 × 0.474 and 0.511 × 0.276, respectively. Conclusions: The 3 day-HBPM protocol including measurements taken before morning micturition and during work in the afternoon showed the best agreement with SAH diagnosis and the best association with prognostic markers.