907 resultados para Energy Density
Resumo:
The purpose of the study is to determine the effects of the BIG 1-98 treatments on bone mineral density. BIG 1-98 compared 5-year adjuvant hormone therapy in postmenopausal women allocated to four groups: tamoxifen (T); letrozole (L); 2-years T, 3-years L (TL); and 2-years L, 3-years T (LT). Bone mineral density T-score was measured prospectively annually by dual energy X-ray absorption in 424 patients enrolled in a sub-study after 3 (n = 150), 4 (n = 200), and 5 years (n = 74) from randomization, and 1 year after treatment cessation. Prevalence of osteoporosis and the association of C-telopeptide, osteocalcin, and bone alkaline phosphatase with T-scores were assessed. At 3 years, T had the highest and TL the lowest T-score. All arms except for LT showed a decline up to 5 years, with TL exhibiting the greatest. At 5 years, there were significant differences on lumbar T-score only between T and TL, whereas for femur T-score, differences were significant for T versus L or TL, and L versus LT. The 5-year prevalence of spine and femur osteoporosis was the highest on TL (14.5 %, 7.1 %) then L (4.3 %, 5.1 %), LT (4.2 %, 1.4 %) and T (4 %, 0). C-telopeptide and osteocalcin were significantly associated with T-scores. While adjuvant L increases bone mineral density loss compared with T, the sequence LT has an acceptable bone safety profile. C-telopeptide and osteocalcin are useful markers of bone density that may be used to monitor bone health during treatment. The sequence LT may be a valid treatment option in patients with low and intermediate risk of recurrence.
Resumo:
Despite the fact that bone mineral density (BMD) is an important fracture risk predictor in human medicine, studies in equine orthopedic research are still lacking. We hypothesized that BMD correlates with bone failure and fatigue fractures of this bone. Thus, the objectives of this study were to measure the structural and mechanical properties of the proximal phalanx with dual energy X-ray absorptiometry (DXA), to correlate the data obtained from DXA and computer tomography (CT) measurements to those obtained by loading pressure examination and to establish representative region of interest (ROI) for in vitro BMD measurements of the equine proximal phalanx for predicting bone failure force. DXA was used to measure the whole bone BMD and additional three ROI sites in 14 equine proximal phalanges. Following evaluation of the bone density, whole bone, cortical width and area in the mid-diaphyseal plane were measured on CT images. Bones were broken using a manually controlled universal bone crusher to measure bone failure force and reevaluated for the site of fractures on follow-up CT images. Compressive load was applied at a constant displacement rate of 2 mm/min until failure, defined as the first clear drop in the load measurement. The lowest BMD was measured at the trabecular region (mean +/- SD: 1.52 +/- 0.12 g/cm2; median: 1.48 g/cm2; range: 1.38-1.83 g/cm2). There was a significant positive linear correlation between trabelcular BMD and the breaking strength (P = 0.023, r = 0.62). The trabecular region of the proximal phalanx appears to be the only significant indicator of failure of strength in vitro. This finding should be reassessed to further reveal the prognostic value of trabecular BMD in an in vivo fracture risk model.
Resumo:
The trabecular bone score (TBS) is an index of bone microarchitectural texture calculated from anteroposterior dual-energy X-ray absorptiometry (DXA) scans of the lumbar spine (LS) that predicts fracture risk, independent of bone mineral density (BMD). The aim of this study was to compare the effects of yearly intravenous zoledronate (ZOL) versus placebo (PLB) on LS BMD and TBS in postmenopausal women with osteoporosis. Changes in TBS were assessed in the subset of 107 patients recruited at the Department of Osteoporosis of the University Hospital of Berne, Switzerland, who were included in the HORIZON trial. All subjects received adequate calcium and vitamin D3. In these patients randomly assigned to either ZOL (n = 54) or PLB (n = 53) for 3 years, BMD was measured by DXA and TBS assessed by TBS iNsight (v1.9) at baseline and 6, 12, 24, and 36 months after treatment initiation. Baseline characteristics (mean ± SD) were similar between groups in terms of age, 76.8 ± 5.0 years; body mass index (BMI), 24.5 ± 3.6 kg/m(2) ; TBS, 1.178 ± 0.1 but for LS T-score (ZOL-2.9 ± 1.5 versus PLB-2.1 ± 1.5). Changes in LS BMD were significantly greater with ZOL than with PLB at all time points (p < 0.0001 for all), reaching +9.58% versus +1.38% at month 36. Change in TBS was significantly greater with ZOL than with PLB as of month 24, reaching +1.41 versus-0.49% at month 36; p = 0.031, respectively. LS BMD and TBS were weakly correlated (r = 0.20) and there were no correlations between changes in BMD and TBS from baseline at any visit. In postmenopausal women with osteoporosis, once-yearly intravenous ZOL therapy significantly increased LS BMD relative to PLB over 3 years and TBS as of 2 years.
Resumo:
Proton radiation therapy is gaining popularity because of the unique characteristics of its dose distribution, e.g., high dose-gradient at the distal end of the percentage-depth-dose curve (known as the Bragg peak). The high dose-gradient offers the possibility of delivering high dose to the target while still sparing critical organs distal to the target. However, the high dose-gradient is a double-edged sword: a small shift of the highly conformal high-dose area can cause the target to be substantially under-dosed or the critical organs to be substantially over-dosed. Because of that, large margins are required in treatment planning to ensure adequate dose coverage of the target, which prevents us from realizing the full potential of proton beams. Therefore, it is critical to reduce uncertainties in the proton radiation therapy. One major uncertainty in a proton treatment is the range uncertainty related to the estimation of proton stopping power ratio (SPR) distribution inside a patient. The SPR distribution inside a patient is required to account for tissue heterogeneities when calculating dose distribution inside the patient. In current clinical practice, the SPR distribution inside a patient is estimated from the patient’s treatment planning computed tomography (CT) images based on the CT number-to-SPR calibration curve. The SPR derived from a single CT number carries large uncertainties in the presence of human tissue composition variations, which is the major drawback of the current SPR estimation method. We propose to solve this problem by using dual energy CT (DECT) and hypothesize that the range uncertainty can be reduced by a factor of two from currently used value of 3.5%. A MATLAB program was developed to calculate the electron density ratio (EDR) and effective atomic number (EAN) from two CT measurements of the same object. An empirical relationship was discovered between mean excitation energies and EANs existing in human body tissues. With the MATLAB program and the empirical relationship, a DECT-based method was successfully developed to derive SPRs for human body tissues (the DECT method). The DECT method is more robust against the uncertainties in human tissues compositions than the current single-CT-based method, because the DECT method incorporated both density and elemental composition information in the SPR estimation. Furthermore, we studied practical limitations of the DECT method. We found that the accuracy of the DECT method using conventional kV-kV x-ray pair is susceptible to CT number variations, which compromises the theoretical advantage of the DECT method. Our solution to this problem is to use a different x-ray pair for the DECT. The accuracy of the DECT method using different combinations of x-ray energies, i.e., the kV-kV, kV-MV and MV-MV pair, was compared using the measured imaging uncertainties for each case. The kV-MV DECT was found to be the most robust against CT number variations. In addition, we studied how uncertainties propagate through the DECT calculation, and found general principles of selecting x-ray pairs for the DECT method to minimize its sensitivity to CT number variations. The uncertainties in SPRs estimated using the kV-MV DECT were analyzed further and compared to those using the stoichiometric method. The uncertainties in SPR estimation can be divided into five categories according to their origins: the inherent uncertainty, the DECT modeling uncertainty, the CT imaging uncertainty, the uncertainty in the mean excitation energy, and SPR variation with proton energy. Additionally, human body tissues were divided into three tissue groups – low density (lung) tissues, soft tissues and bone tissues. The uncertainties were estimated separately because their uncertainties were different under each condition. An estimate of the composite range uncertainty (2s) was determined for three tumor sites – prostate, lung, and head-and-neck, by combining the uncertainty estimates of all three tissue groups, weighted by their proportions along typical beam path for each treatment site. In conclusion, the DECT method holds theoretical advantages in estimating SPRs for human tissues over the current single-CT-based method. Using existing imaging techniques, the kV-MV DECT approach was capable of reducing the range uncertainty from the currently used value of 3.5% to 1.9%-2.3%, but it is short to reach our original goal of reducing the range uncertainty by a factor of two. The dominant source of uncertainties in the kV-MV DECT was the uncertainties in CT imaging, especially in MV CT imaging. Further reduction in beam hardening effect, the impact of scatter, out-of-field object etc. would reduce the Hounsfeld Unit variations in CT imaging. The kV-MV DECT still has the potential to reduce the range uncertainty further.
Resumo:
PURPOSE The goal of this study was to investigate whether different computed tomography (CT) energy levels could supply additional information for the differentiation of dental materials for forensic investigations. METHODS Nine different commonly used restorative dental materials were investigated in this study. A total of 75 human third molars were filled with the restorative dental materials and then scanned using the forensic reference phantom in singlesource mode. The mean Hounsfield unit values and standard deviations (SDs) of each material were calculated at 120, 80 and 140 kVp. RESULTS Most of the dental materials could be differentiated at 120 kVp. We found that greater X-ray density of a material resulted in higher SDs and that the material volume could influence the measurements. CONCLUSION Differentiation of dental materials in CT was possible in many cases using single-energy CT scans at 120 kVp. Because of the number of dental restorative materials available and scanner and scan parameter dependence, as well as the CT imaging artifacts, the identification (in contrast to differentiation) was problematic.
Resumo:
The response of cholesterol metabolism to a negative energy balance (NEB) induced by feed restriction for 3 weeks starting at 100 days in milk (DIM) compared to the physiologically occurring NEB in week 1 postpartum (p.p.) was investigated in 50 dairy cows (25 control (CON) and 25 feed-restricted (RES)). Blood samples, liver biopsies and milk samples were taken in week 1 p.p., and in weeks 0 and 3 of feed restriction. Plasma concentrations of total cholesterol (C), phospholipids (PL), triglycerides (TAG), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C) increased in RES cows from week 0 to 3 during feed restriction and were higher in week 3 compared to CON cows. In contrast, during the physiologically occurring NEB in week 1 p.p., C, PL, TAG and lipoprotein concentrations were at a minimum. Plasma phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities did not differ between week 0 and 3 for both groups, whereas during NEB in week 1 p.p. PLTP activity was increased and LCAT activity was decreased. Milk C concentration was not affected by feed restriction in both groups, whereas milk C mass was decreased in week 3 for RES cows. In comparison, C concentration and mass in milk were elevated in week 1 p.p. Hepatic mRNA abundance of sterol regulatory element-binding factor-2 (SREBF-2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and ATP-binding cassette transporter (ABCA1) were similar in CON and RES cows during feed restriction, but were upregulated during NEB in week 1 p.p. compared to the non-lactating stage without a NEB. In conclusion, cholesterol metabolism in dairy cows is affected by nutrient and energy deficiency depending on the stage of lactation.
Resumo:
Io's plasma and neutral tori play significant roles in the Jovian magnetosphere. We present feasibility studies of measuring low-energy energetic neutral atoms (LENAs) generated from the Io tori. We calculate the LENA flux between 10 eV and 3 keV. The energy range includes the corotational plasma flow energy. The expected differential flux at Ganymede distance is typically 10(3)-10(5) cm(-2) s(-1) sr(-1) eV(-1) near the energy of the corotation. It is above the detection level of the planned LENA sensor that is to be flown to the Jupiter system with integration times of 0.01-1 s. The flux has strong asymmetry with respective to the Io phase. The observations will exhibit periodicities, which can be attributed to the Jovian magnetosphere rotation and the rotation of Io around Jupiter. The energy spectra will exhibit dispersion signatures, because of the non-negligible flight time of the LENAs from Io to the satellite. In 2030, the Jupiter exploration mission JUICE will conduct a LENA measurement with a LENA instrument, the Jovian Neutrals Analyzer (JNA). From the LENA observations collected by JNA, we will be able to derive characteristic quantities, such as the density, velocity, velocity distribution function, and composition of plasma-torus particles. We also discuss the possible physics to be explored by JNA in addition to the constraints for operating the sensor and analyzing the obtained dataset. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The effectiveness of the Anisotropic Analytical Algorithm (AAA) implemented in the Eclipse treatment planning system (TPS) was evaluated using theRadiologicalPhysicsCenteranthropomorphic lung phantom using both flattened and flattening-filter-free high energy beams. Radiation treatment plans were developed following the Radiation Therapy Oncology Group and theRadiologicalPhysicsCenterguidelines for lung treatment using Stereotactic Radiation Body Therapy. The tumor was covered such that at least 95% of Planning Target Volume (PTV) received 100% of the prescribed dose while ensuring that normal tissue constraints were followed as well. Calculated doses were exported from the Eclipse TPS and compared with the experimental data as measured using thermoluminescence detectors (TLD) and radiochromic films that were placed inside the phantom. The results demonstrate that the AAA superposition-convolution algorithm is able to calculate SBRT treatment plans with all clinically used photon beams in the range from 6 MV to 18 MV. The measured dose distribution showed a good agreement with the calculated distribution using clinically acceptable criteria of ±5% dose or 3mm distance to agreement. These results show that in a heterogeneous environment a 3D pencil beam superposition-convolution algorithms with Monte Carlo pre-calculated scatter kernels, such as AAA, are able to reliably calculate dose, accounting for increased lateral scattering due to the loss of electronic equilibrium in low density medium. The data for high energy plans (15 MV and 18 MV) showed very good tumor coverage in contrast to findings by other investigators for less sophisticated dose calculation algorithms, which demonstrated less than expected tumor doses and generally worse tumor coverage for high energy plans compared to 6MV plans. This demonstrates that the modern superposition-convolution AAA algorithm is a significant improvement over previous algorithms and is able to calculate doses accurately for SBRT treatment plans in the highly heterogeneous environment of the thorax for both lower (≤12 MV) and higher (greater than 12 MV) beam energies.
Resumo:
Seabirds feed heavily on Arctic cod Boreogadus saida during the summer in the Canadian Arctic but little is known of the interactions among birds while foraging and the factors that drive feeding behaviour. The objective of this study was to describe the relationship between seabirds and Arctic cod in a productive feeding area distant from breeding colonies. Transect surveys were completed using standardized count protocols to determine the density of seabirds in Allen Bay, Cornwallis Island, Nunavut. Shore-based observation sites determined seabird foraging behaviour associated with the presence of schools and environmental variables. The density of birds (156 bird/km**2) was high compared to that of other locations in the Canadian Arctic. Several bird species were more active early in the morning and with winds from the south, possibly due to an increase in Arctic cod feeding on zooplankton at the surface. Northern fulmars Fulmarus glacialis and black-legged kittiwakes Rissa tridactyla captured Arctic cod directly from the water; however, they lost nearly 25% of captures to glaucous gulls Larus hyperboreus and parasitic jaegers Stercorarius parasiticus. These kleptoparasitic seabirds benefited the most in Allen Bay obtaining as much as 8 times more Arctic cod than species capturing cod directly. Northern fulmars captured 3 times more Arctic cod from schools, and black-legged kittiwakes captured similar proportions of schooling and non-schooling cod. We conclude that non-schooling Arctic cod are as important as schooling cod as an energy source for seabirds in nearshore areas, such as Allen Bay, during the summer.
Resumo:
The terrigenous mineral fraction of sediments recovered by drilling during Ocean Drilling Program Leg 167 at Sites 1018 and 1020 is used to evaluate changes in the source and transport of fine-grained terrigenous sediment and its relation to regional climates and the paleoceanographic evolution of the California Current system during the late Pleistocene. Preliminary time scales developed by correlation of oxygen isotope stratigraphies with the global SPECMAP record show average linear sedimentation rates in excess of 100 m/m.y., which provide an opportunity for high-resolution studies of terrigenous flux, grain size, and mineralogy. The mass flux of terrigenous minerals at Site 1018 varies from 5 to 30 g/(cm**2 x k.y.) and displays a general trend toward increased flux during glacials. The terrigenous record at Site 1020 shows a similar pattern of increased glacial input, but overall accumulation rates are significantly lower. Spectral analysis demonstrates that most of this variability is concentrated in frequency bands related to orbital cycles of eccentricity, tilt, and precession. Detailed grain-size analysis performed on the isolated terrigenous mineral fraction shows that sediments from Site 1018 are associated with higher energy transport and depositional regimes than those found at Site 1020. Grain-size data are remarkably uniform throughout the last 500 k.y., with no discernible difference observed between glacial and interglacial size distributions within each site. X-ray diffraction analysis of the <2-µm clay component suggests that the deposition of minerals found at Site 1020 is consistent with transport from a southern source during intervals of increased terrigenous input.
Resumo:
EWT solar cells start from drilled wafers with approximately 100 holes/cm2. These holes act as stress concentrators leading to a reduction in the mechanical strength of this type of wafers. The viability of cells with higher density of holes has been studied. To this end, sets of wafers with different density of holes have been characterized. The ring on ring test has been employed and FE models have been developed to simulate the test. The statistical evaluation permits to draw conclusions about the reduction of the strength depending on the density of holes. Moreover, the stress concentration around the holes has been studied by means of the FE method employing the sub-modeling technique. The maximum principal stress of EWT wafers with twice the density of holes of commercial ones is almost the same. However, the mutual interaction between the stress concentration effects around neighboring holes is only observed for wafers with a density of 200 holes/cm2
Resumo:
Commercial aluminium foam filled structures and sandwich panels are available for structural applications. As alternative to these materials, small granular foamed pieces are proposed to fill structures as well as sandwich panels. On the present work, foam precursors are obtained by Powder Metallurgy (PM) route, using natural calcium carbonate as foaming agent instead of titanium hydride. Extruded precursor bars were cut into small pieces (around 4.5 mm long and 5mm in diameter). Foaming treatment was carried out on two different ways: electrical preheated furnace and by solar furnace. Foamed nodules presented a low cell size, density e.g. 0.67 g/cm3 to 0.88 g/cm3 and a height/diameter ratio between 0.72 and 0.84 as a function of precursor size. These properties depend on the foaming particle size, foaming cycle and precursor dimensions. Carbonate precursors are easily foamed by concentrated solar energy, due to the lower risk of cell collapse than with hydride precursors, resulting from cell stabilization by oxide skin formation into cells and a low degree of foamed nodules bonding.
Resumo:
Twenty production blasts in two open pit mines were monitored, in rocks with medium to very high strength. Three different blasting agents (ANFO, watergel and emulsion blend) were used, with powder factors ranging between 0.88 and 1.45 kg/m3. Excavators were front loaders and rope shovels. Mechanical properties of the rock, blasting characteristics and mucking rates were carefully measured. A model for the calculation of the productivity of excavators is developed thereof, in which the production rate results as a product of an ideal, maximum, productivity rate times an operating efficiency. The maximum rate is a function of the dipper capacity and the efficiency is a function of rock density, strength, and explosive energy concentration in the rock. The model is statistically significant and explains up to 92 % of the variance of the production rate measurements.
Resumo:
The aim of this work was to evaluate different management strategies to optimize rabbit production under chronic heat stress. To achieve it, three trials were conducted. In the first trial, to find the optimal cage density in tropical very dry forest condition, were measured growth performance, mortality rate, injured animals and carcass performance over an initial population of 300 cross-breed rabbits of New Zealand, California, Butterfly, Dutch and Satin, weaned at 30 days (535 ± 8 g, standard error). Treatments evaluated were: 6, 12, 18 and 24 rabbits/m2 (3, 6, 9 and 12 rabbits/cage, respectively, each cage of 0.5 m2). The maximal temperature-humidity index indicated a severe heat stress from weaning to 2.2 kg body weight (experimental time). At the end of experimental period 10, 20, 30 and 30 rabbits from the treatments of 6, 12, 18 and 24 rabbits/m2, respectively, were slaughtered and carcass performance recorded. Average daily gain and feed intake decreased by 0.31 ± 0.070 and 1.20 ± 0.25 g, respectively, per each unit that the density increased at the beginning of the experiment (P = 0.001). It increased the length of the fattening period by 0.91 ± 0.16 d (P = 0.001) per each unit of increment of density. However, rabbit production (kg/m2) increased linear and quadratically with the density (P < 0.008). Animals housed at the highest density compared to the lower one tended to show a higher incidence of ringworm (68.9 vs 39.4%; P = 0.075), injured animals (16.8 vs 3.03%; P = 0.12) and mortality (20.5 vs 9.63%; P = 0.043). The proportion of scapular fat (P = 0.042) increased linearly with increasing levels of density. Increasing density reduced linearly dorsal length (P = 0.001), and reduced linear and quadratically drip loss percentage (P = 0.097 and 0.018, respectively). In the second trial, 46 nulliparous rabbit does (23 clipped and 23 unclipped) with a BW of 3.67 ± 0.05 kg (s.e.) were used to evaluate heat stress and circadian rhythms comparing unclipped and clipped rabbit does, and to study if a more extensive breeding system increase litters performance at weaning without impairing rabbit doe performance,. Rectal temperature, feed and water 4 intake were recorded for 24 h. Rabbit does were mated 7 d after circadian measurements, and randomly assigned to two breeding systems. Control (C): mated at 14 d after parturition + litter weaned at 35 d of age. Extensive (E): mate at 21 after parturition + litter weaned at 42 d of age. The first three cycles were evaluated concerning to rabbit doe and litter performance. Two hundred twenty eight weaned rabbits, were divided into two cage sizes: 0.5 and 0.25 m2 with same density (16 rabbit/m2) and growing performance was recorded. Farm and rectal temperatures were minimal and feed and water intake maximal during the night (P < 0.001). Unclipped rabbit does showed higher rectal temperature (P = 0.045) and lower feed intake respect to clipped does (P = 0.019) which suggest a lower heat stress in the latter. Kits weaned per litter was reduced by 33% (P=0.038) in C group. This reduction was more important in the 2nd and 3rd cycles compared to the first (P ≤ 0.054). Rabbit doe feed efficiency tended to decrease in E respect C group (P = 0.093), whereas it was impaired from the first to the third cycle by 48% (P = 0.014). Growing rabbits from the E group were heavier at weaning (by 38%. P < 0.001), showed a higher feed intake (+7.4%) and lower feed efficiency (-8.4%) throughout the fattening period (P ≤ 0.056) respect to C group. Cage size had minor influence in growing performance. In the third trial, forty five non pregnant and non lactating rabbit does (21 nulliparous and 24 multiparous) were assigned randomly to farm water and to potable water to study if a water quality improvement can affect positively rabbit doe response to heat stress during pregnancy and lactation. A transponder was implanted in each animal to record subcutaneous temperature at 07:30 and 14:30 h. Experimental period extended from pregnancy (with no lactation) to the next lactation (until day 28). Body temperature and milk production were recorded daily, and body condition, feed and water intake weekly. Water quality did not affect any trait (P ≥ 0.15). Pregnant rabbit does were classified as does that weaned (W: 47%), not weaned (NW: 44%) or those pregnant that did not deliver (NB: 9%). Body temperature and feed intake decreased during pregnancy (P ≤ 0.031), but water intake remained constant. In this period body temperature decreased with metabolic weight (P ≤ 0.009). In W and NW does, 5 from mating to birth energy and protein balance impaired (P≤0.011). Body temperature of W does tended to be the lowest (P ≤ 0.090). Pregnancy length and total number of kits born tended to be longer and higher in NW than in W does (P = 0.10 and 0.053, respectively). Kit mortality at birth and from birth to 14 d of lactation was high, being worse for NW than for W does (97 vs. 40%; P<0.001). Body temperature during lactation was maximal at day 12, and milk production increased it (P ≤ 0.025). . In conclusion, in our heat stress conditions densities higher than 18 rabbits/m2 (34 kg/m2) at the end of fattening, are not recommended despite cage size, gestation and lactation productivity impaired not only when lactation is extended and along successive reproductive cycles but also due to a reduced embryo/kit survival and finally water quality improvement did not attenuate negative effect of heat stress. RESUMEN El propósito de éste trabajo fue evaluar diferentes estrategias de manejo para optimizar la producción de conejos bajo estrés térmico. Para lo cual se desarrollaron tres experimentos. En el primer experimento, para encontrar el número óptimo de gazapos por m2 de jaula durante el cebo en condiciones de bosque muy seco tropical, se estudiaron los rendimientos durante el cebo, mortalidad, animales lesionados y rendimiento de la canal sobre una población inicial de 300 conejos mestizos de Nueva Zelanda, California, Mariposa, Holandés y Satin, destetados a los 30 días de edad (535 ± 8g, error estándar). Los tratamientos evaluados fueron: 6, 12, 18 y 24 conejos/m2 (3, 6, 9 y 12 conejos/jaula, respectivamente, en jaulas de 0.5 m2). Durante el período experimental (destete a 2.2 kg de peso vivo), se observaron valores de THI correspondientes con un estrés térmico severo (THI max. De 31 a 35). Al final del período experimental, 10, 20, 30, y 30 conejos de los tratamientos con densidades de 6, 12, 18 y 24 conejos/m2, respectivamente, fueron sacrificados y su canal fue valorada. El promedio de la ganancia diaria y el consumo de alimento disminuyeron en 0.31 ± 0.070 y 1.20 ± 0.25 g, respectivamente, por cada unidad de incremento en la densidad al inicio del experimento (P=0.001). Esto alargó el período de engorde en 0.91 ± 0.16 d (P=0.001) por cada unidad de incremento de la densidad. Sin embargo, la producción de conejos (kg/m2) aumentó lineal y cuadráticamente con la densidad (P<0.008). Los animales alojados en las mayores densidades en comparación con el resto tendieron a mostrar una mayore incidencia de tiña (68.9 vs 39.4%; P=0.075), de cantidad de animales heridos (16.8 vs 3.03%; P=0.12), así como de mortalidad (20.5 vs 9.63%; P=0.043). El aumento en la densidad aumentó linealmente la proporción de grasa escapular (P=0.042) y redujo linealmente la longitud dorsal (P=0.001), y lineal y cuadráticamente el porcentaje de pérdida por goteo (P=0.018). En el segundo experimento, 46 conejas nulliparas (23 rasuradas y 23 no rasuradas) con un peso vivo de 3.67 ± 0.05 kg (e.e.) fueron usadas para evaluar el estrés 8 térmico y los ritmos circadianos comparando conejas rasuradas o no, y estudiar si un sistema de crianza más extensivo mejora el desempeño de la camada al destete sin perjudicar la productividad de la coneja. Durante 24 h se midió la temperatura rectal, consumo de alimento y de agua. Las conejas fueron montadas 7 días después, y distribuidas en dos sistemas de crianza. El control (C): monta a 14 días posparto y destete a 35 d de edad. El extensivo (E): monta a 21 días posparto y destete a 42 d de edad. Se controló la productividad de la coneja y la camada durante los tres primeros ciclos. Doscientos veintiocho gazapos fueron distribuidos en dos tamaños de jaulas (0.5 y 0.25 m2) con la misma densidad (16 conejos/m2) y se controlaron sus rendimientos productivos. Durante la noche se observaron los valores mínimos para la temperatura ambiental y rectal, y los máximos para consumo de alimento y agua (P< 0.001). Las conejas no rasuradas mostraron mayor temperatura rectal (P=0.045) y menores valores de consumo de alimento con respecto a las conejas rasuradas (P=0.019), lo que sugiere un menor estrés térmico en las últimas. El número de gazapos destetados por camada se redujo en 33% (P=0.038) en el grupo C. Este comportamiento se acentuó en el 2do y 3er ciclo en comparación con el primero (P≤0.054). La eficiencia alimenticia de las conejas tendió a disminuir en el grupo E con respecto al grupo C (P=0.093), dicha tendencia se acentúa del primer al tercer ciclo en un 48% (P=0.014). Los gazapos en fase de crecimiento provenientes del grupo E fueron más pesados al momento del destete (en 38% P<0.001), mostrando un mayor consumo de alimento (+7.4%) y menor eficiencia alimenticia (-8.4%) a lo largo del engorde (P≤0.056) con respecto al grupo C. El tamaño de la jaula tuvo una mínima influencia en el comportamiento durante el crecimiento de éstos gazapos. En el tercer experimento, cuarenta y cinco conejas no gestantes ni lactantes (21 nulíparas y 24 multíparas) se les asignó al azar agua dos tipos de agua: común de la granja y agua potable, con el fin de estudiar si una mejora en la calidad del agua puede afectar positivamente la respuesta de la coneja al estrés térmico durante la gestación y la lactancia. Se les implantó un transponder para registrar la temperatura subcutánea a las 7:30 y a las 14:30 h. El período experimental se extendió desde la gestación (sin 9 lactancia) hasta la lactanción consecutiva (hasta los 28 días). La temperatura corporal y la producción de leche se controlaron diariamente, y la condición corporal, consumo de agua y alimento, semanalmente. La calidad del agua no afectó a ninguna variable (P≥0.15). Las conejas preñadas fueron clasificadas como conejas que destetaron (W: 47%), que no destetaron (NW:44%) o aquellas que no parieron (NB: 9%). La temperatura corporal y consumo de alimento disminuyeron durante la gestación (P≤0.031), mientras que el consumo de agua se mantuvo constante. La temperatura corporal descendió con el peso metabólico durante la gestación (P≤0.009). El balance de energía y proteína disminuyó desde la monta al parto para las conejas W y NW (P≤0.011). Durante la gestación la temperatura corporal tendió a ser menor en las conejas W (P≤0.090). La longitud de la gestación y el número total de gazapos nacidos tendieron a ser mayores en conejas NW que en conejas W (P=0.10 y 0.053, respectivamente). La mortalidad de los gazapos al parto y del parto a los 14 días de lactancia fue alta, siendo peor para las conejas NW que para las W (97 vs 40%; P<0.001). Durante la lactancia la temperatura corporal alcanzó su valor máximo para el día 12, y la producción de leche indujo un incremento en la misma (P≤0.025). En conclusión, en nuestras condiciones de estrés térmico y sin importar el tamaño de la jaula, no se recomiendan densidades mayores a 18 conejos/m2 (34 kg/m2) al final del engorde. La productividad de la gestación y la lactancia disminuyen cuando la lactancia es mayor y se suceden varios ciclos reproductivos seguidos. Esto se debe al efecto negativo del estrés térmico sobre la vitalidad y supervivencia del embrión/gazapo. La mejora de la calidad del agua atenuó el efecto negativo del estrés térmico. Las conejas más productoras parece que son aquéllas que consiguen manejar mejor el estrés térmico.
Resumo:
Several authors have analysed the changes of the probability density function of the solar radiation with different time resolutions. Some others have approached to study the significance of these changes when produced energy calculations are attempted. We have undertaken different transformations to four Spanish databases in order to clarify the interrelationship between radiation models and produced energy estimations. Our contribution is straightforward: the complexity of a solar radiation model needed for yearly energy calculations, is very low. Twelve values of monthly mean of solar radiation are enough to estimate energy with errors below 3%. Time resolutions better than hourly samples do not improve significantly the result of energy estimations.