979 resultados para Endogenous collateral
Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis.
Resumo:
RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.
Resumo:
The plasma glucose excursion may influence the metabolic responses after oral glucose ingestion. Although previous studies addressed the effects of hyperglycemia in conditions of hyperinsulinemia, it has not been evaluated whether the route of glucose administration (oral vs. intravenous) plays a role. Our aim was to determine the effects of moderately controlled hyperglycemia on glucose metabolism before and after oral glucose ingestion. Eight normal men underwent two oral glucose clamps at 6 and 10 mmol/l plasma glucose. Glucose turnover and cycling rates were measured by infusion of [2H7]glucose. The oral glucose load was labeled by D-[6,6-2H2]glucose to monitor exogenous glucose appearance, and respiratory exchanges were measured by indirect calorimetry. Sixty percent of the oral glucose load appeared in the systemic circulation during both the 6 and 10 mmol/l plasma glucose tests, although less endogenous glucose appeared during the 10 mmol/l tests before glucose ingestion (P < 0.05). This inhibitory effect of hyperglycemia was not detectable after oral glucose ingestion, although glucose utilization was increased (+28%, P < 0.05) due to increased nonoxidative glucose disposal [10 vs. 6 mmol/l: +20%, not significant (NS) before oral glucose ingestion; +40%, P < 0.05 after oral glucose ingestion]. Glucose cycling rates were increased by hyperglycemia (+13% before oral glucose ingestion, P < 0.001; +31% after oral glucose ingestion, P < 0.05) and oral glucose ingestion during both the 6 (+10%, P < 0.05) and 10 mmol/l (+26%, P < 0.005) tests. A moderate hyperglycemia inhibits endogenous glucose production and contributes to glucose tolerance by enhancing nonoxidative glucose disposal. Hyperglycemia and oral glucose ingestion both stimulate glucose cycling.
Resumo:
The Republic of Haiti is the prime international remittances recipient country in the Latin American and Caribbean (LAC) region relative to its gross domestic product (GDP). The downside of this observation may be that this country is also the first exporter of skilled workers in the world by population size. The present research uses a zero-altered negative binomial (with logit inflation) to model households' international migration decision process, and endogenous regressors' Amemiya Generalized Least Squares method (instrumental variable Tobit, IV-Tobit) to account for selectivity and endogeneity issues in assessing the impact of remittances on labor market outcomes. Results are in line with what has been found so far in this literature in terms of a decline of labor supply in the presence of remittances. However, the impact of international remittances does not seem to be important in determining recipient households' labor participation behavior, particularly for women.
Resumo:
Peripheral nerve injury is a serious problem affecting significantly patients' life. Autografts are the "gold standard" used to repair the injury gap, however, only 50% of patients fully recover from the trauma. Artificial conduits are a valid alternative to repairing peripheral nerve. They aim at confining the nerve environment throughout the regeneration process, and providing guidance to axon outgrowth. Biocompatible materials have been carefully designed to reduce inflammation and scar tissue formation, but modifications of the inner lumen are still required in order to optimise the scaffolds. Biomicking the native neural tissue with extracellular matrix fillers or coatings showed great promises in repairing longer gaps and extending cell survival. In addition, extracellular matrix molecules provide a platform to further bind growth factors that can be released in the system over time. Alternatively, conduit fillers can be used for cell transplantation at the injury site, reducing the lag time required for endogenous Schwann cells to proliferate and take part in the regeneration process. This review provides an overview on the importance of extracellular matrix molecules in peripheral nerve repair.
Resumo:
Nitric oxide (NO) is crucial for the microvascular homeostasis, but its role played in the microvascular alterations during sepsis remains controversial. We investigated NO-dependent vasodilation in the skin microcirculation and plasma levels of asymmetric dimethylarginine (ADMA), a potent endogenous inhibitor of the NO synthases, in a human model of sepsis. In this double-blind, randomized, crossover study, microvascular NO-dependent (local thermal hyperemia) and NO-independent vasodilation (post-occlusive reactive hyperemia) assessed by laser Doppler imaging, plasma levels of ADMA, and l-arginine were measured in seven healthy obese volunteers, immediately before and 4 h after either a i.v. bolus injection of Escherichia coli endotoxin (LPS; 2 ng/kg) or normal saline (placebo) on two different visits at least 2 weeks apart. LPS caused the expected systemic effects, including increases in heart rate (+43%, P < 0.001), cardiac output (+16%, P < 0.01), and rectal temperature (+1.4°C, P < 0.001), without change in arterial blood pressure. LPS affected neither baseline skin blood flow nor post-occlusive reactive hyperemia but decreased the NO-dependent local thermal hyperemia response, l-arginine, and, to a lesser extent, ADMA plasma levels. The changes in NO-dependent vasodilation were not correlated with the corresponding changes in the plasma levels of ADMA, l-arginine, or the l-arginine/ADMA ratio. Our results show for the first time that experimental endotoxemia in humans causes a specific decrease in endothelial NO-dependent vasodilation in the microcirculation, which cannot be explained by a change in ADMA levels. Microvascular NO deficiency might be responsible for the heterogeneity of tissue perfusion observed in sepsis and could be a therapeutic target.
Resumo:
Amino acids have been reported to increase endogenous glucose production in normal human subjects during hyperinsulinemia: however, controversy exists as to whether insulin-mediated glucose disposal is inhibited under these conditions. The effect of an amino acid infusion on glucose oxidation rate has so far not been determined. Substrate oxidation rates, endogenous glucose production, and [13C]glucose synthesis from [13C]bicarbonate were measured in six normal human subjects during sequential infusions of exogenous glucose and exogenous glucose with (n = 5) or without (n = 5) exogenous amino acids. Amino acids increased endogenous glucose production by 84% and [13C]glucose synthesis by 235%. Glucose oxidation estimated from indirect calorimetry decreased slightly after amino acids, but glucose oxidation estimated from [13C]glucose-13CO2 data was increased by 14%. It is concluded that gluconeogenesis is the major pathway of amino acid degradation. During amino acid administration, indirect calorimetry underestimates the true rate of glucose oxidation, whereas glucose oxidation calculated from the 13C enrichment of expired CO2 during [U-13C]glucose infusion does not. A slight stimulation of glucose oxidation during amino acid infusion, concomitant with an increased plasma insulin concentration, indicates that amino acids do not inhibit glucose oxidation.
Resumo:
L'ubiquitination est une modification des protéines conservée, consistant en l'addition de résidus « ubiquitine » et régulant le destin cellulaire des protéines. La protéine « TRAF-interacting protein » TRAIP (ou TRIP) est une ligase E3 qui catalyse l'étape finale de l'ubiquitination. TRAIP est conservé dans l'évolution et est nécessaire au développement des organismes puisque l'ablation de TRAIP conduit à la mort embryonnaire aussi bien de la drosophile que de la souris. De plus, la réduction de l'expression de TRAIP dans des kératinocytes épidermiques humains réprime la prolifération cellulaire et induit un arrêt du cycle cellulaire en phase Gl, soulignant le lien étroit entre TRAIP et la prolifération cellulaire. Comme les mécanismes de régulation de la prolifération jouent un rôle majeur dans l'homéostasie de la peau, il est important de caractériser la fonction de TRAIP dans ces mécanismes. En utilisant des approches in vitro, nous avons déterminé que la protéine TRAIP est instable, modifiée par l'addition d'ubiquitine et ayant une demi-vie d'environ 4 heures. Nos analyses ont également révélé que l'expression de TRAIP est dépendante du cycle cellulaire, atteignant un pic d'expression en phase G2/M et que l'induction de son expression s'effectue principalement au cours de la transition Gl/S. Nous avons identifié le facteur de transcription E2F1 comme en étant le responsable, en régulant directement le promoteur de TRAIP. Aussi, TRAIP endogène ou surexprimée est surtout localisée au niveau du nucléole, une organelle nucléaire qui est désassemblée pendant la division cellulaire. Pour examiner la localisation subcellulaire de TRAIP pendant la mitose, nous avons imagé la protéine TRAIP fusionnée à une protéine fluorescente, à l'intérieur de cellules vivantes nommées HeLa, à l'aide d'un microscope confocal. Dans ces conditions, TRAIP est majoritairement localisée autour des chromosomes en début de mitose, puis est arrangée au niveau de l'ADN chromosomique en fin de mitose. La détection de TRAIP endogène à l'aide d'un anticorps spécifique a confirmé cette localisation. Enfin, l'inactivation de TRAIP dans les cellules HeLa par interférence ARN a inhibé leur capacité à s'arrêter en milieu de mitose. Nos résultats suggèrent que le mécanisme sous-jacent peut être lié au point de contrôle de l'assemblage du fuseau mitotique. - Ubiquitination of proteins is a post-translational modification which decides the cellular fate of the protein. The TRAF-interacting protein (TRAIP, TRIP) functions as an E3 ubiquitin ligase mediating addition of ubiquitin moieties to proteins. TRAIP interacts with the deubiquitinase CYLD, a tumor suppressor whose functional inactivation leads to skin appendage tumors. TRAIP is required for early embryonic development since removal of TRAIP either in Drosophila or mice by mutations or knock¬out is lethal due to aberrant regulation of cell proliferation and apoptosis. Furthermore, shRNA- mediated knock-down of TRAIP in human epidermal keratinocytes (HEK) repressed cell proliferation and induced a Gl/S phase block in the cell cycle. Additionally, TRAIP expression is strongly down- regulated during keratinocyte differentiation supporting the notion of a tight link between TRAIP and cell proliferation. We thus examined the biological functions of TRAIP in epithelial cell proliferation. Using an in vitro approach, we could determine that the TRAIP protein is unstable, modified by addition of ubiquitin moieties after translation and exhibits a half-life of 3.7+/-1-6 hours. Our analysis revealed that the TRAIP expression is modulated in a cell-cycle dependent manner, reaching a maximum expression level in G2/M phases. In addition, the expression of TRAIP was particularly activated during Gl/S phase transition and we could identify the transcription factor E2F1 as an activator of the TRAIP gene promoter. Both endogenous and over-expressed TRAIP mainly localized to the nucleolus, a nuclear organelle which is disassembled during cell division. To examine the subcellular localization of TRAIP during M phase, we performed confocal live-cell imaging of a functional fluorescent protein TRAIP-GFP in HeLa cells. TRAIP was distributed in the cytoplasm and accumulated around mitotic chromosomes in pro- and meta-phasic cells. TRAIP was then confined to chromosomal DNA location in anaphase and later phases of mitosis. Immune-detection of endogenous TRAIP protein confirmed its particular localization in mitosis. Finally, inactivating TRAIP expression in HeLa cells using RNA interference abrogated the cells ability to stop or delay mitosis progression. Our results suggested that TRAIP may involve the spindle assembly checkpoint.
Resumo:
The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.
Resumo:
Report for the scientific sojourn carried out at the Departament de Psicologia de la Universitat de les Illes Balears, Spain, from May until July 2006. Abnormalities in executive functions, including set shifting ability, represent a cardinal feature in schizophrenia. This ability to adapt behavior to changing environmental events or contingencies requires a mechanism for switching attention between learned stimulus-response associations, or task-sets. This project aimed at gaining further knowledge on the brain mechanisms related to the executive control of attention in schizophrenia during the performace of a task switching paradigm. Furthermore, a secondary goal was to further examine the interrelationships between endogenous and exogenous control processes in task set switching.
Resumo:
Neural stem cells have been proposed as a new and promising treatment modality in various pathologies of the central nervous system, including malignant brain tumors. However, the underlying mechanism by which neural stem cells target tumor areas remains elusive. Monitoring of these cells is currently done by use of various modes of molecular imaging, such as optical imaging, magnetic resonance imaging and positron emission tomography, which is a novel technology for visualizing metabolism and signal transduction to gene expression. In this new context, the microenvironment of (malignant) brain tumors and the blood-brain barrier gains increased interest. The authors of this review give a unique overview of the current molecular-imaging techniques used in different therapeutic experimental brain tumor models in relation to neural stem cells. Such methods for molecular imaging of gene-engineered neural stem/progenitor cells are currently used to trace the location and temporal level of expression of therapeutic and endogenous genes in malignant brain tumors, closing the gap between in vitro and in vivo integrative biology of disease in neural stem cell transplantation.
Resumo:
BACKGROUND: Menarche and menopause mark the onset and cessation, respectively, of ovarian activity associated with reproduction, and affect breast cancer risk. Our aim was to assess the strengths of their effects and determine whether they depend on characteristics of the tumours or the affected women. METHODS: Individual data from 117 epidemiological studies, including 118 964 women with invasive breast cancer and 306 091 without the disease, none of whom had used menopausal hormone therapy, were included in the analyses. We calculated adjusted relative risks (RRs) associated with menarche and menopause for breast cancer overall, and by tumour histology and by oestrogen receptor expression. FINDINGS: Breast cancer risk increased by a factor of 1·050 (95% CI 1·044-1·057; p<0·0001) for every year younger at menarche, and independently by a smaller amount (1·029, 1·025-1·032; p<0·0001), for every year older at menopause. Premenopausal women had a greater risk of breast cancer than postmenopausal women of an identical age (RR at age 45-54 years 1·43, 1·33-1·52, p<0·001). All three of these associations were attenuated by increasing adiposity among postmenopausal women, but did not vary materially by women's year of birth, ethnic origin, childbearing history, smoking, alcohol consumption, or hormonal contraceptive use. All three associations were stronger for lobular than for ductal tumours (p<0·006 for each comparison). The effect of menopause in women of an identical age and trends by age at menopause were stronger for oestrogen receptor-positive disease than for oestrogen receptor-negative disease (p<0·01 for both comparisons). INTERPRETATION: The effects of menarche and menopause on breast cancer risk might not be acting merely by lengthening women's total number of reproductive years. Endogenous ovarian hormones are more relevant for oestrogen receptor-positive disease than for oestrogen receptor-negative disease and for lobular than for ductal tumours. FUNDING: Cancer Research UK.
Resumo:
A Ca-stimulated ATPase activity (pH 9.5) associated with the tegumental membrane enriched (TME) fraction of Schistosoma mansoni adults was partially inhibited by NAP-taurine or by increasing concentrations of chlorpromazine; endogenous calmodulin was found associated with the TME fraction. A similar activity (pH 8.6) was histochemically visualized whithin the tegument of fixed worms on the cytoplasmic leaflet of both the doubel surface membrane and the basement membrane; this reaction was inhibited by 1 µM chloropromazine and it was also observed on the inner side of double membrane vesicles present in the TME fraction. No ATPase activity could be seen at alkaline pH with added Mg or Na/K ions. Without ATP, the addition of external Ca to the fixed worms induced the appearance of lead precipitates on the tegumental discoid bodies; this reaction was inhibited by molybdate and not by chlorpromazine. The intrategumentary regulation of calcium by the systems described and the possible use of phenothiazines against schistosimes are discussed.
Resumo:
This paper studies the quantitative implications of changes in the composition of taxes for long-run growth and expected lifetime utility in the UK economy over 1970-2005. Our setup is a dynamic stochastic general equilibrium model incorporating a detailed scal policy struc- ture, and where the engine of endogenous growth is human capital accumulation. The government s spending instruments include pub- lic consumption, investment and education spending. On the revenue side, labour, capital and consumption taxes are employed. Our results suggest that if the goal of tax policy is to promote long-run growth by altering relative tax rates, then it should reduce labour taxes while simultaneously increasing capital or consumption taxes to make up for the loss in labour tax revenue. In contrast, a welfare promoting policy would be to cut capital taxes, while concurrently increasing labour or consumption taxes to make up for the loss in capital tax revenue.
Resumo:
Life on earth is subject to the repeated change between day and night periods. All organisms that undergo these alterations have to anticipate consequently the adaptation of their physiology and possess an endogenous periodicity of about 24 hours called circadian rhythm from the Latin circa (about) and diem (day). At the molecular level, virtually all cells of an organism possess a molecular clock which drives rhythmic gene expression and output functions. Besides altered rhythmicity in constant conditions, impaired clock function causes pathophysiological conditions such as diabetes or hypertension. These data unveil a part of the mechanisms underlying the well-described epidemiology of shift work and highlight the function of clock-driven regulatory mechanisms. The post-translational modification of proteins by the ubiquitin polypeptide is a central mechanism to regulate their stability and activity and is capital for clock function. Similarly to the majority of biological processes, it is reversible. Deubiquitylation is carried out by a wide variety of about ninety deubiquitylating enzymes and their function remains poorly understood, especially in vivo. This class of proteolytic enzymes is parted into five families including the Ubiquitin-Specific Proteases (USP), which is the most important with about sixty members. Among them, the Ubiquitin-Specific Protease 2 (Usp2) gene encodes two protein isoforms, USP2-45 and USP2-69. The first is ubiquitously expressed under the control of the circadian clock and displays all features of core clock genes or its closest outputs effectors. Additionally, Usp2-45 was also found to be induced by the mineralocorticoid hormone aldosterone and thought to participate in Na+ reabsorption and blood pressure regulation by Epithelial Na+ Channel ENaC in the kidneys. During my thesis, I aimed to characterize the role of Usp2 in vivo with respect to these two areas, by taking advantage of a total constitutive knockout mouse model. In the first project I aimed to validate the role of USP2-45 in Na+ homeostasis and blood pressure regulation by the kidneys. I found no significant alterations of diurnal Na+ homeostasis and blood pressure in these mice, indicating that Usp2 does not play a substantial role in this process. In urine analyses, we found that our Usp2-KO mice are actually hypercalciuric. In a second project, I aimed to understand the causes of this phenotype. I found that the observed hypercalciuria results essentially from intestinal hyperabsorption. These data reveal a new role for Usp2 as an output effector of the circadian clock in dietary Ca2+ metabolism in the intestine.
Resumo:
BACKGROUND: Data from prospective cohort studies regarding the association between subclinical hyperthyroidism and cardiovascular outcomes are conflicting.We aimed to assess the risks of total and coronary heart disease (CHD) mortality, CHD events, and atrial fibrillation (AF) associated with endogenous subclinical hyperthyroidism among all available large prospective cohorts. METHODS: Individual data on 52 674 participants were pooled from 10 cohorts. Coronary heart disease events were analyzed in 22 437 participants from 6 cohorts with available data, and incident AF was analyzed in 8711 participants from 5 cohorts. Euthyroidism was defined as thyrotropin level between 0.45 and 4.49 mIU/L and endogenous subclinical hyperthyroidism as thyrotropin level lower than 0.45 mIU/L with normal free thyroxine levels, after excluding those receiving thyroid-altering medications. RESULTS: Of 52 674 participants, 2188 (4.2%) had subclinical hyperthyroidism. During follow-up, 8527 participants died (including 1896 from CHD), 3653 of 22 437 had CHD events, and 785 of 8711 developed AF. In age- and sex-adjusted analyses, subclinical hyperthyroidism was associated with increased total mortality (hazard ratio[HR], 1.24, 95% CI, 1.06-1.46), CHD mortality (HR,1.29; 95% CI, 1.02-1.62), CHD events (HR, 1.21; 95%CI, 0.99-1.46), and AF (HR, 1.68; 95% CI, 1.16-2.43).Risks did not differ significantly by age, sex, or preexisting cardiovascular disease and were similar after further adjustment for cardiovascular risk factors, with attributable risk of 14.5% for total mortality to 41.5% forAF in those with subclinical hyperthyroidism. Risks for CHD mortality and AF (but not other outcomes) were higher for thyrotropin level lower than 0.10 mIU/L compared with thyrotropin level between 0.10 and 0.44 mIU/L(for both, P value for trend, .03). CONCLUSION: Endogenous subclinical hyperthyroidism is associated with increased risks of total, CHD mortality, and incident AF, with highest risks of CHD mortality and AF when thyrotropin level is lower than 0.10 mIU/L.