986 resultados para Empiricist vice
Resumo:
R. Chidambaram is the principal scientific advisor to the government of India and is past president of the Materials Research Society-India. He joined the Bhabha Atomic Research Center (BARC) in 1962, became its director in 1990, and is currently the Department of Atomic Energy Homi Bhabha Chair Professor. He served as chair of the Atomic Energy Commission and secretary to the government of India in the Department of Atomic Energy from February 1993 to November 2000. Chidambaram is a fellow of all of the major science academies in India and also of the Third World Academy of Sciences in Trieste, Italy. He chaired the Board of Governors of the International Atomic Energy Agency (IAEA) during 1994–1995. Until recently, he was vice president of the International Union of Crystallography. Chidambaram is currently chair of the council and the governing body of the Technology Information, Forecasting, and Assessment Council (TIFAC). He received his PhD and DSc degrees from the Indian Institute of Science, Bangalore, and holds honorary DSc degrees from several Indian universities.
Resumo:
The capacity region of a two-user Gaussian Multiple Access Channel (GMAC) with complex finite input alphabets and continuous output alphabet is studied. When both the users are equipped with the same code alphabet, it is shown that, rotation of one of the user’s alphabets by an appropriate angle can make the new pair of alphabets not only uniquely decodable, but will result in enlargement of the capacity region. For this set-up, we identify the primary problem to be finding appropriate angle(s) of rotation between the alphabets such that the capacity region is maximally enlarged. It is shown that the angle of rotation which provides maximum enlargement of the capacity region also minimizes the union bound on the probability of error of the sumalphabet and vice-verse. The optimum angle(s) of rotation varies with the SNR. Through simulations, optimal angle(s) of rotation that gives maximum enlargement of the capacity region of GMAC with some well known alphabets such as M-QAM and M-PSK for some M are presented for several values of SNR. It is shown that for large number of points in the alphabets, capacity gains due to rotations progressively reduce. As the number of points N tends to infinity, our results match the results in the literature wherein the capacity region of the Gaussian code alphabet doesn’t change with rotation for any SNR.
Resumo:
Miniaturization of devices and the ensuing decrease in the threshold voltage has led to a substantial increase in the leakage component of the total processor energy consumption. Relatively simpler issue logic and the presence of a large number of function units in the VLIW and the clustered VLIW architectures attribute a large fraction of this leakage energy consumption in the functional units. However, functional units are not fully utilized in the VLIW architectures because of the inherent variations in the ILP of the programs. This underutilization is even more pronounced in the context of clustered VLIW architectures because of the contentions for the limited number of slow intercluster communication channels which lead to many short idle cycles.In the past, some architectural schemes have been proposed to obtain leakage energy bene .ts by aggressively exploiting the idleness of functional units. However, presence of many short idle cycles cause frequent transitions from the active mode to the sleep mode and vice-versa and adversely a ffects the energy benefits of a purely hardware based scheme. In this paper, we propose and evaluate a compiler instruction scheduling algorithm that assist such a hardware based scheme in the context of VLIW and clustered VLIW architectures. The proposed scheme exploits the scheduling slacks of instructions to orchestrate the functional unit mapping with the objective of reducing the number of transitions in functional units thereby keeping them off for a longer duration. The proposed compiler-assisted scheme obtains a further 12% reduction of energy consumption of functional units with negligible performance degradation over a hardware-only scheme for a VLIW architecture. The benefits are 15% and 17% in the context of a 2-clustered and a 4-clustered VLIW architecture respectively. Our test bed uses the Trimaran compiler infrastructure.
Resumo:
Motivated by the viscosity bound in gauge/gravity duality, we consider the ratio of shear viscosity (eta) to entropy density (s) in black hole accretion flows. We use both an ideal gas equation of state and the QCD equation of state obtained from lattice for the fluid accreting onto a Kerr black hole. The QCD equation of state is considered since the temperature of accreting matter is expected to approach 10(12) K in certain hot flows. We find that in both the cases eta/s is small only for primordial black holes and several orders of magnitude larger than any known fluid for stellar and supermassive black holes. We show that a lower bound on the mass of primordial black holes leads to a lower bound on eta/s and vice versa. Finally we speculate that the Shakura-Sunyaev viscosity parameter should decrease with increasing density and/or temperatures. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Investigations into the variation of self-diffusivity with solute radius, density, and degree of disorder of the host medium is explored. The system consists of a binary mixture of a relatively smaller sized solute, whose size is varied and a larger sized solvent interacting via Lennard-Jones potential. Calculations have been performed at three different reduced densities of 0.7, 0.8, and 0.933. These simulations show that diffusivity exhibits a maximum for some intermediate size of the solute when the solute diameter is varied. The maximum is found at the same size of the solute at all densities which is at variance with the prediction of the levitation effect. In order to understand this anomaly, additional simulations were carried out in which the degree of disorder has been varied while keeping the density constant. The results show that the diffusivity maximum gradually disappears with increase in disorder. Disorder has been characterized by means of the minimal spanning tree. Simulations have also been carried out in which the degree of disorder is constant and only the density is altered. The results from these simulations show that the maximum in diffusivity now shifts to larger distances with decrease in density. This is in agreement with the changes in void and neck distribution with density of the host medium. These results are in excellent agreement with the predictions of the levitation effect. They suggest that the effect of disorder is to shift the maximum in diffusivity towards smaller solute radius while that of the decrease in density is to shift it towards larger solute radius. Thus, in real systems where the degree of disorder is lower at higher density and vice versa, the effect due to density and disorder have opposing influences. These are confirmed by the changes seen in the velocity autocorrelation function, self part of the intermediate scattering function and activation energy. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3701619]
Resumo:
An imbalance between breakup and coalescence of drops in turbulent liquid-liquid dispersions leads to inversion of phases the dispersed phase becomes continuous and vice versa. An increase in the rate of coalescence of drops is expected to decrease the dispersed phase fraction at which inversion occurs. In the present work, we increased the rate of coalescence of drops by adding electrolyte to pure liquid-liquid dispersions. The experiments carried out for three representative liquid-liquid systems show that contrary to the expectation the addition of an electrolyte increases the dispersed phase fraction at which inversion occurs for both, oil-in-water and water-in-oil dispersions. The step-down experiments confirm that the addition of the electrolyte increases the rate of coalescence of drops in lean dispersions under the same conditions, thereby confirming an anomalous effect of the presence of an electrolyte on the stability of dispersions. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Savitzky-Golay (S-G) filters are finite impulse response lowpass filters obtained while smoothing data using a local least-squares (LS) polynomial approximation. Savitzky and Golay proved in their hallmark paper that local LS fitting of polynomials and their evaluation at the mid-point of the approximation interval is equivalent to filtering with a fixed impulse response. The problem that we address here is, ``how to choose a pointwise minimum mean squared error (MMSE) S-G filter length or order for smoothing, while preserving the temporal structure of a time-varying signal.'' We solve the bias-variance tradeoff involved in the MMSE optimization using Stein's unbiased risk estimator (SURE). We observe that the 3-dB cutoff frequency of the SURE-optimal S-G filter is higher where the signal varies fast locally, and vice versa, essentially enabling us to suitably trade off the bias and variance, thereby resulting in near-MMSE performance. At low signal-to-noise ratios (SNRs), it is seen that the adaptive filter length algorithm performance improves by incorporating a regularization term in the SURE objective function. We consider the algorithm performance on real-world electrocardiogram (ECG) signals. The results exhibit considerable SNR improvement. Noise performance analysis shows that the proposed algorithms are comparable, and in some cases, better than some standard denoising techniques available in the literature.
Resumo:
We report tuning of photoluminescence enhancement and quenching from closed packed monolayers of cadmium selenide quantum dots doped with gold nanoparticles. Plasmon-mediated control of the emission intensity from the monolayers is achieved by varying the size and packing density of the quantum dots as well as the doping concentration of gold nanoparticles. We observe a unique packing density dependent crossover from enhancement to quenching and vice versa for fixed size of quantum dots and doping concentration of gold nanoparticles. We suggest that this behavior is indicative of a crossover from single particle to collective emission from quantum dots mediated by gold nanoparticles.
Resumo:
We consider bounds for the capacity region of the Gaussian X channel (XC), a system consisting of two transmit-receive pairs, where each transmitter communicates with both the receivers. We first classify the XC into two classes, the strong XC and the mixed XC. In the strong XC, either the direct channels are stronger than the cross channels or vice-versa, whereas in the mixed XC, one of the direct channels is stronger than the corresponding cross channel and vice-versa. After this classification, we give outer bounds on the capacity region for each of the two classes. This is based on the idea that when one of the messages is eliminated from the XC, the rate region of the remaining three messages are enlarged. We make use of the Z channel, a system obtained by eliminating one message and its corresponding channel from the X channel, to bound the rate region of the remaining messages. The outer bound to the rate region of the remaining messages defines a subspace in R-+(4) and forms an outer bound to the capacity region of the XC. Thus, the outer bound to the capacity region of the XC is obtained as the intersection of the outer bounds to the four combinations of the rate triplets of the XC. Using these outer bounds on the capacity region of the XC, we derive new sum-rate outer bounds for both strong and mixed Gaussian XCs and compare them with those existing in literature. We show that the sum-rate outer bound for strong XC gives the sum-rate capacity in three out of the four sub-regions of the strong Gaussian XC capacity region. In case of mixed Gaussian XC, we recover the recent results in 11] which showed that the sum-rate capacity is achieved in two out of the three sub-regions of the mixed XC capacity region and give a simple alternate proof of the same.
Resumo:
Phototaxis is a directed swimming response dependent upon the light intensity sensed by microorganisms. Positive phototaxis denotes motion directed towards the source of light and negative phototaxis is motion directed away from it. In this paper, we investigate the onset of bioconvection in a suspension of anisotropic scattering phototactic algae illuminated by collimated radiation at the top. The basic state of the system is defined by the zero fluid flow and the up and down swimming, caused by the positive and negative phototaxis, is balanced by the diffusion. A comprehensive numerical study of the linear stability is presented with particular emphasis on the forward scattering effect. The onset of bioconvection occurs either via a stationary mode or an oscillatory mode. The transition from a stationary mode to an oscillatory mode or vice versa has been observed as the anisotropic coefficient is varied for certain parameter values. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
The twin demands of energy-efficiency and higher performance on DRAM are highly emphasized in multicore architectures. A variety of schemes have been proposed to address either the latency or the energy consumption of DRAMs. These schemes typically require non-trivial hardware changes and end up improving latency at the cost of energy or vice-versa. One specific DRAM performance problem in multicores is that interleaved accesses from different cores can potentially degrade row-buffer locality. In this paper, based on the temporal and spatial locality characteristics of memory accesses, we propose a reorganization of the existing single large row-buffer in a DRAM bank into multiple sub-row buffers (MSRB). This re-organization not only improves row hit rates, and hence the average memory latency, but also brings down the energy consumed by the DRAM. The first major contribution of this work is proposing such a reorganization without requiring any significant changes to the existing widely accepted DRAM specifications. Our proposed reorganization improves weighted speedup by 35.8%, 14.5% and 21.6% in quad, eight and sixteen core workloads along with a 42%, 28% and 31% reduction in DRAM energy. The proposed MSRB organization enables opportunities for the management of multiple row-buffers at the memory controller level. As the memory controller is aware of the behaviour of individual cores it allows us to implement coordinated buffer allocation schemes for different cores that take into account program behaviour. We demonstrate two such schemes, namely Fairness Oriented Allocation and Performance Oriented Allocation, which show the flexibility that memory controllers can now exploit in our MSRB organization to improve overall performance and/or fairness. Further, the MSRB organization enables additional opportunities for DRAM intra-bank parallelism and selective early precharging of the LRU row-buffer to further improve memory access latencies. These two optimizations together provide an additional 5.9% performance improvement.
Resumo:
Matroidal networks were introduced by Dougherty et al. and have been well studied in the recent past. It was shown that a network has a scalar linear network coding solution if and only if it is matroidal associated with a representable matroid. The current work attempts to establish a connection between matroid theory and network-error correcting codes. In a similar vein to the theory connecting matroids and network coding, we abstract the essential aspects of network-error correcting codes to arrive at the definition of a matroidal error correcting network. An acyclic network (with arbitrary sink demands) is then shown to possess a scalar linear error correcting network code if and only if it is a matroidal error correcting network associated with a representable matroid. Therefore, constructing such network-error correcting codes implies the construction of certain representable matroids that satisfy some special conditions, and vice versa.
Resumo:
The dibenzyl derivative of poly(3,4-propylenedioxythiophene) (PProDOT-Bz(2)) thin film is deposited onto ITO-coated glass substrate by electropolymerization technique. The electropolymerization of ProDOT-Bz(2) is carried out by a three-electrode electrochemical cell. The cyclic voltammogram shows the redox properties of electrochemically prepared films deposited at different scan rates. The thin films prepared were characterized for its morphological properties to study the homogeniety. Classic six-layer structure of PProDOT-Bz(2) electrochromic device using this material was fabricated and reported for the first and its characterizations such as spectroelectrochemical, switching kinetics, and chronoamperometric studies are performed. The color contrast of the thin film and the device achieved are 64 and 40%, respectively, at lambda(max) (628 nm). The switching time is recorded and the observed values are 5 s from the coloring state to the bleaching state and vice versa. The chronoamperometry shows that the device performed up to 400 cycles, and it is capable of working up to 35 cycles without any degradation. (C) 2014 Wiley Periodicals, Inc.
Resumo:
The phenomenon of cocrystallization, which encompasses the art of making multicomponent organic solids such as cocrystals, solid solutions, eutectics, etc. for novel applications, has been less studied in terms of reliably and specifically obtaining a desired cocrystallization product and the issues that govern their formation. Further, the design, structural, and functional aspects of organic eutectics have been relatively unexplored as compared to solid solutions and cocrystals well-established by crystal engineering principles. Recently, eutectics were proposed to be designable materials on par with cocrystals, and herein we have devised a systematic approach, based on the same crystal engineering principles, to specifically and desirably make both eutectics and cocrystals for a given system. The propensity for strong homomolecular synthons over weak heteromolecular synthons and vice versa during supramolecular growth was successfully utilized to selectively obtain eutectics and cocrystals, respectively, in two model systems and in two drug systems. A molecular level understanding of the formation of eutectics and cocrystals and their structural interrelationships which is significant from both fundamental and application viewpoints is discussed. On the other hand, the obscurity in establishing a low melting combination as a eutectic or a cocrystal is resolved through phase diagrams.
Resumo:
The subiculum is a structure that forms a bridge between the hippocampus and the entorhinal cortex (EC), and plays a major role in the memory consolidation process. Here, we demonstrate spike-timing-dependent plasticity (STDP) at the proximal excitatory inputs on the subicular pyramidal neurons of juvenile rat. Causal (positive) pairing of a single EPSP with a single back-propagating action potential (bAP) after a time interval of 10 ms (+10 ms) failed to induce plasticity. However, increasing the number of bAPs in a burst to three, at two different frequencies of 50 Hz (bAP burst) and 150 Hz, induced long-term depression (LTD) after a time interval of +10 ms in both the regular-firing (RF), and the weak burst firing (WBF) neurons. The LTD amplitude decreased with increasing time interval between the EPSP and the bAP burst. Reversing the order of the pairing of the EPSP and the bAP burst induced LTP at a time interval of -10 ms. This finding is in contrast with reports at other synapses, wherein prebefore postsynaptic (causal) pairing induced LTP and vice versa. Our results reaffirm the earlier observations that the relative timing of the pre- and postsynaptic activities can lead to multiple types of plasticity profiles. The induction of timing-dependent LTD (t-LTD) was dependent on postsynaptic calcium change via NMDA receptors in the WBF neurons, while it was independent of postsynaptic calcium change, but required active L-type calcium channels in the RF neurons. Thus the mechanism of synaptic plasticity may vary within a hippocampal subfield depending on the postsynaptic neuron involved. This study also reports a novel mechanism of LTD induction, where L-type calcium channels are involved in a presynaptically induced synaptic plasticity. The findings may have strong implications in the memory consolidation process owing to the central role of the subiculum and LTD in this process.