936 resultados para Electronic apparatus and appliances -- Power supply
Resumo:
Adolescents engage in a range of risk behaviors during their transition from childhood to adulthood. Identifying and understanding interpersonal and socio-environmental factors that may influence risk-taking is imperative in order to meet the Healthy People 2020 goals of reducing the incidence of unintended pregnancies, HIV, and other sexually transmitted infections among youth. The purpose of this study was to investigate gender differences in the predictors of HIV risk behaviors among South Florida youth. More specifically, this study examined how protective factors, risk factors, and health risk behaviors, derived from a guiding framework using the Theory of Problem Behavior and Theory of Gender and Power, were associated with HIV risk behavior. A secondary analysis of 2009 Youth Risk Behavior Survey data sets from Miami-Dade, Broward, and Palm Beach school districts tested hypotheses for factors associated with HIV risk behaviors. The sample consisted of 5,869 high school students (mean age 16.1 years), with 69% identifying as Black or Hispanic. Logistic regression analyses revealed gender differences in the predictors of HIV risk behavior. An increase in the health risk behaviors was related to an increase in the odds that a student would engage in HIV risk behavior. An increase in risk factors was also found to significantly predict an increase in the odds of HIV risk behavior, but only in females. Also, the probability of participation in HIV risk behavior increased with grade level. Post-hoc analyses identified recent sexual activity (past 3 months) as the strongest predictor of condom nonuse and having four or more sexual partners for both genders. The strongest predictors of having sex under the influence of drugs/alcohol were alcohol use in both genders, marijuana use in females, and physical fighting in males. Gender differences in the predictors of unprotected sex, multiple sexual partners, and having sex under the influence were also found. Additional studies are warranted to understand the gender differences in predictors of HIV risk behavior among youth in order to better inform prevention programming and policy, as well as meet the national Healthy People 2020 goals.
Resumo:
The purpose of this thesis was to explore how Christian networks enable strategies of transnational alliance, whereby groups in different nations strive to strengthen one another’s leverage and credibility in order to resolve conflicts and elaborate new possibilities. This research does so by analyzing the case of the Presbyterian Church of Colombia (IPC). The project examines the historical development of the IPC from the initial missionary period of the 1850s until the present. Specifically, the purpose of the study was to consider how the historical struggle to articulate autonomy and equality vis-à-vis the U.S. Presbyterians (PCUSA) and paternalist models of ecclesial relations has affected recent political strategies pursued by the IPC. Despite the paternalism of the early missionary model, changing conceptions of social transformation during the 60s contributed to a shift in relations. Over time the IPC and PCUSA negotiated relationships in which groups both acknowledge a problematic history and insist upon an ethnic of partnership and respect. Today, PCUSA groups, in concert with the IPC, collaborate on a range of transnational political strategies aimed at strengthening the IPC’s leverage in local struggles for justice and peace. A review of this case suggests that long-established Christian networks may have an advantage over other civil society groups such as NGOs in facilitating strategies of transnational alliance. Although civil society organizations often have better access to important resources needed for international advocacy initiatives, Christian networks, such as the one established between the IPC and U.S. Presbyterian communities, rely on a history of negotiating power-disparity in order to elaborate relationships based on listening and partnership. Such findings prove important not only to how we conceptualize transnational alliance but also to the ways that we think about the history and future of Christian networks.
Resumo:
This research investigates the implementation of battery-less RFID sensing platforms inside lossy media, such as, concrete and grout. Both concrete and novel grouts can be used for nuclear plant decommissioning as part of the U.S. Department of Energy’s (DOE’s) cleanup projects. Our research examines the following: (1) material characterization, (2) analytical modeling of transmission and propagation losses inside lossy media, (3) maximum operational range of RFID wireless sensors embedded inside concrete and grout, and (4) best positioning of antennas for achieving longer communication range between RFID antennas and wireless sensors. Our research uses the battery-less Wireless Identification and Sensing Platform (WISP) which can be used to monitor temperature, and humidity inside complex materials. By using a commercial Agilent open-ended coaxial probe (HP8570B), the measurements of the dielectric permittivity of concrete and grout are performed. Subsequently, the measured complex permittivity is used to formulate analytical Debye models. Also, the transmission and propagation losses of a uniform plane wave inside grout are calculated. Our results show that wireless sensors will perform better in concrete than grout. In addition, the maximum axial and radial ranges for WISP are experimentally determined. Our work illustrates the feasibility of battery-less wireless sensors that are embedded inside concrete and grout. Also, our work provides information that can be used to optimize the power management, sampling rate, and antenna design of such sensors.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. ^ The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. ^ The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.^
Resumo:
A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.
Resumo:
Despite the well-recognized benefits of exercise, Americans are gaining weight in astounding proportions and levels of physical activity are on the decline. The purpose of this study was to investigate a relationship between physical fitness, self-concept and sexual health. There is a dearth of knowledge on this relationship specifically in the context of sex-negative curricula, which is the dominate discourse in the United States. One hundred and thirty-three participants between the ages of 18 - 50 volunteered for fitness testing and data collection. Physical fitness was assessed through body fat, resting metabolic rate, cardiovascular endurance, muscular strength, muscular endurance and flexibility. Self-reported exercise was measured using the International Physical Activity Questionnaire. Self-concept was measured by the Six Factor Self-Concept Scale, which presented a total self-concept score and as six individual concepts of self (likability, morality, task accomplishment, giftedness, power and vulnerability). Additionally, sexual function was measured by Derogatis Interview for Sexual Functioning and presented as both an aggregate score and five separate constructs of sexual functioning (fantasy/cognition, arousal, orgasm, behavior/experience, and drive/desire). Questions pertaining to sexual partners, sex education, and demographic information were also included. The results of the General Linear Model indicated significant relationships between physical fitness, self-concept and total sexual functioning. The sexual behavior/experience of men was predicted by body fat percentage and flexibility. In women, behavior/experience was predicted by body fat percentage and arousal was predicted by cardiovascular endurance. Total self-concept was related to muscular endurance. When men were isolated in the analysis, likability was positively related to sexual behavior/experience, and task accomplishment was inversely related to sexual behavior/experience. In women, giftedness was related to cognition/fantasy, arousal, orgasm and total sexual functioning. No relationships were found between physical fitness and the number of sexual partners in men; however, both muscular strength and the power self-concept were significantly related to number of sexual partners in women. As a result of these findings, women may be inclined to exercise to improve arousal and sexual functioning. Furthermore, educators should note the findings of a positive relationship between physical and psychological health and sexual well-being because they provide support for the development and adoption of sex-positive curricula that incorporate potential benefits of sexual activity.
Resumo:
The era between the close of the nineteenth century and the onset of the First World War witnessed a marked increase in radical agitation among Indian and Irish nationalists. The most outspoken political leaders of the day founded a series of widely circulated newspapers in India and Ireland, placing these editors in the enviable position of both reporting and creating the news. Nationalist journalists were in the vanguard of those pressing vocally for an independent India and Ireland, and together constituted an increasingly problematic contingent for the British Empire. The advanced-nationalist press in Ireland and the nationalist press in India took the lead in facilitating the exchange of provocative ideas—raising awareness of perceived imperial injustices, offering strategic advice, and cementing international solidarity. Irish and Indian press coverage of Britain’s imperial wars constituted one of the premier weapons in the nationalists’ arsenal, permitting them to build support for their ideology and forward their agenda in a manner both rapid and definitive. Directing their readers’ attention to conflicts overseas proved instructive in how the Empire dealt with those who resisted its policies, and also showcased how it conducted its affairs with its allies. As such, critical press coverage of the Boxer Rebellion, Boer War, Russo-Japanese War, and World War I bred disaffection for the Empire, while attempts by the Empire to suppress the critiques further alienated the public. This dissertation offers the first comparative analysis of the major nationalist press organs in India and Ireland, using the prism of war to illustrate the increasingly persuasive role of the press in promoting resistance to the Empire. It focuses on how the leading Indian and Irish editors not only fostered a nationalist agenda within their own countries, but also worked in concert to construct a global anti-imperialist platform. By highlighting the anti-imperial rhetoric of the nationalist press in India and Ireland and illuminating their strategies for attaining self-government, this study deepens understanding of the seeds of nationalism, making a contribution to comparative imperial scholarship, and demonstrating the power of the media to alter imperial dynamics and effect political change.
Resumo:
The study evaluated the effects of herbivory pressure, nutrient availability and potential propagule supply on recruitment and succession of coral reef macroalgal communities. Recruitment and succession tiles were placed in a nutrient-herbivory factorial experiment and macroalgal abundances were evaluated through time. Proportional abundances of macroalgal form-functional groups on recruitment and succession tiles were similar to field established communities within treatments, evidencing possible effects of adult macroalgae as propagule supply. Macroalgal abundance of recruitment tiles increased with nutrient loading and herbivory reduction combined whereas on succession tiles nutrient loading increased abundance of articulated-calcareous only when herbivores were excluded. Macroalgal field established communities were only affected by herbivory reduction.
Resumo:
Since the end of the Cold War, Japan’s defense policy and politics has gone through significant changes. Throughout the post cold war period, US-Japan alliance managers, politicians with differing visions and preferences, scholars, think tanks, and the actions of foreign governments have all played significant roles in influencing these changes. Along with these actors, the Japanese prime minister has played an important, if sometimes subtle, role in the realm of defense policy and politics. Japanese prime ministers, though significantly weaker than many heads of state, nevertheless play an important role in policy by empowering different actors (bureaucratic actors, independent commissions, or civil actors), through personal diplomacy, through agenda-setting, and through symbolic acts of state. The power of the prime minister to influence policy processes, however, has frequently varied by prime minister. My dissertation investigates how different political strategies and entrepreneurial insights by the prime minister have influenced defense policy and politics since the end of the Cold War. In addition, it seeks to explain how the quality of political strategy and entrepreneurial insight employed by different prime ministers was important in the success of different approaches to defense. My dissertation employs a comparative case study approach to examine how different prime ministerial strategies have mattered in the realm of Japanese defense policy and politics. Three prime ministers have been chosen: Prime Minister Hashimoto Ryutaro (1996-1998); Prime Minister Koizumi Junichiro (2001-2006); and Prime Minister Hatoyama Yukio (2009-2010). These prime ministers have been chosen to provide maximum contrast on issues of policy preference, cabinet management, choice of partners, and overall strategy. As my dissertation finds, the quality of political strategy has been an important aspect of Japan’s defense transformation. Successful strategies have frequently used the knowledge and accumulated personal networks of bureaucrats, supplemented bureaucratic initiatives with top-down personal diplomacy, and used a revitalized US-Japan strategic relationship as a political resource for a stronger prime ministership. Though alternative approaches, such as those that have looked to displace the influence of bureaucrats and the US in defense policy, have been less successful, this dissertation also finds theoretical evidence that alternatives may exist.
Resumo:
A plethora of recent literature on asset pricing provides plenty of empirical evidence on the importance of liquidity, governance and adverse selection of equity on pricing of assets together with more traditional factors such as market beta and the Fama-French factors. However, literature has usually stressed that these factors are priced individually. In this dissertation we argue that these factors may be related to each other, hence not only individual but also joint tests of their significance is called for. In the three related essays, we examine the liquidity premium in the context of the finer three-digit SIC industry classification, joint importance of liquidity and governance factors as well as governance and adverse selection. Recent studies by Core, Guay and Rusticus (2006) and Ben-Rephael, Kadan and Wohl (2010) find that governance and liquidity premiums are dwindling in the last few years. One reason could be that liquidity is very unevenly distributed across industries. This could affect the interpretation of prior liquidity studies. Thus, in the first chapter we analyze the relation of industry clustering and liquidity risk following a finer industry classification suggested by Johnson, Moorman and Sorescu (2009). In the second chapter, we examine the dwindling influence of the governance factor if taken simultaneously with liquidity. We argue that this happens since governance characteristics are potentially a proxy for information asymmetry that may be better captured by market liquidity of a company’s shares. Hence, we jointly examine both the factors, namely, governance and liquidity – in a series of standard asset pricing tests. Our results reconfirm the importance of governance and liquidity in explaining stock returns thus independently corroborating the findings of Amihud (2002) and Gompers, Ishii and Metrick (2003). Moreover, governance is not subsumed by liquidity. Lastly, we analyze the relation of governance and adverse selection, and again corroborate previous findings of a priced governance factor. Furthermore, we ascertain the importance of microstructure measures in asset pricing by employing Huang and Stoll’s (1997) method to extract an adverse selection variable and finding evidence for its explanatory power in four-factor regressions.
Tubular and Sector Heat Pipes with Interconnected Branches for Gas Turbine and/or Compressor Cooling
Resumo:
Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.
Resumo:
PURPOSE: To assess the relationship between short-term and long-term changes in power at different corneal locations relative to the change in central corneal power and the 2-year change in axial elongation relative to baseline in children fitted with orthokeratology contact lenses (OK). METHODS: Thirty-one white European subjects 6 to 12 years of age and with myopia −0.75 to −4.00 DS and astigmatism ≤1.00 DC were fitted with OK. Differences in refractive power 3 and 24 months post-OK in comparison with baseline and relative to the change in central corneal power were determined from corneal topography data in eight different corneal regions (i.e., N[nasal]1, N2, T[temporal]1, T2, I[inferior]1, I2, S[superior]1, S2), and correlated with OK-induced axial length changes at two years relative to baseline. RESULTS: After 2 years of OK lens wear, axial length increased by 0.48±0.18 mm (P0.05). CONCLUSION: The reduction in central corneal power and relative increase in paracentral and pericentral power induced by OK over 2 years were not significantly correlated with concurrent changes in axial length of white European children.
Resumo:
Power system policies are broadly on track to escalate the use of renewable energy resources in electric power generation. Integration of dispersed generation to the utility network not only intensifies the benefits of renewable generation but also introduces further advantages such as power quality enhancement and freedom of power generation for the consumers. However, issues arise from the integration of distributed generators to the existing utility grid are as significant as its benefits. The issues are aggravated as the number of grid-connected distributed generators increases. Therefore, power quality demands become stricter to ensure a safe and proper advancement towards the emerging smart grid. In this regard, system protection is the area that is highly affected as the grid-connected distributed generation share in electricity generation increases. Islanding detection, amongst all protection issues, is the most important concern for a power system with high penetration of distributed sources. Islanding occurs when a portion of the distribution network which includes one or more distributed generation units and local loads is disconnected from the remaining portion of the grid. Upon formation of a power island, it remains energized due to the presence of one or more distributed sources. This thesis introduces a new islanding detection technique based on an enhanced multi-layer scheme that shows superior performance over the existing techniques. It provides improved solutions for safety and protection of power systems and distributed sources that are capable of operating in grid-connected mode. The proposed active method offers negligible non-detection zone. It is applicable to micro-grids with a number of distributed generation sources without sacrificing the dynamic response of the system. In addition, the information obtained from the proposed scheme allows for smooth transition to stand-alone operation if required. The proposed technique paves the path towards a comprehensive protection solution for future power networks. The proposed method is converter-resident and all power conversion systems that are operating based on power electronics converters can benefit from this method. The theoretical analysis is presented, and extensive simulation results confirm the validity of the analytical work.
Resumo:
Power efficiency is one of the most important constraints in the design of embedded systems since such systems are generally driven by batteries with limited energy budget or restricted power supply. In every embedded system, there are one or more processor cores to run the software and interact with the other hardware components of the system. The power consumption of the processor core(s) has an important impact on the total power dissipated in the system. Hence, the processor power optimization is crucial in satisfying the power consumption constraints, and developing low-power embedded systems. A key aspect of research in processor power optimization and management is “power estimation”. Having a fast and accurate method for processor power estimation at design time helps the designer to explore a large space of design possibilities, to make the optimal choices for developing a power efficient processor. Likewise, understanding the processor power dissipation behaviour of a specific software/application is the key for choosing appropriate algorithms in order to write power efficient software. Simulation-based methods for measuring the processor power achieve very high accuracy, but are available only late in the design process, and are often quite slow. Therefore, the need has arisen for faster, higher-level power prediction methods that allow the system designer to explore many alternatives for developing powerefficient hardware and software. The aim of this thesis is to present fast and high-level power models for the prediction of processor power consumption. Power predictability in this work is achieved in two ways: first, using a design method to develop power predictable circuits; second, analysing the power of the functions in the code which repeat during execution, then building the power model based on average number of repetitions. In the first case, a design method called Asynchronous Charge Sharing Logic (ACSL) is used to implement the Arithmetic Logic Unit (ALU) for the 8051 microcontroller. The ACSL circuits are power predictable due to the independency of their power consumption to the input data. Based on this property, a fast prediction method is presented to estimate the power of ALU by analysing the software program, and extracting the number of ALU-related instructions. This method achieves less than 1% error in power estimation and more than 100 times speedup in comparison to conventional simulation-based methods. In the second case, an average-case processor energy model is developed for the Insertion sort algorithm based on the number of comparisons that take place in the execution of the algorithm. The average number of comparisons is calculated using a high level methodology called MOdular Quantitative Analysis (MOQA). The parameters of the energy model are measured for the LEON3 processor core, but the model is general and can be used for any processor. The model has been validated through the power measurement experiments, and offers high accuracy and orders of magnitude speedup over the simulation-based method.
Resumo:
This thesis is part of the fields of Material Physics and Organic Electronics and aims to determine the charge carrier density and mobility in the hydrated conducting polymer–polyelectrolyte blend PEDOT:PSS. This kind of material combines electronic semiconductor functionality with selective ionic transport, biocompatibility and electrochemical stability in water. This advantageous material properties combination makes PEDOT:PSS a unique material to build organic electrochemical transistors (OECTs), which have relevant application as amplifying transducers for bioelectronic signals. In order to measure charge carrier density and mobility, an innovative 4-wire, contact independent characterization technique was introduced, the electrolyte-gated van der Pauw (EgVDP) method, which was combined with electrochemical impedance spectroscopy. The technique was applied to macroscopic thin film samples and micro-structured PEDOT:PSS thin film devices fabricated using photolithography. The EgVDP method revealed to be effective for the measurements of holes’ mobility in hydrated PEDOT:PSS thin films, which resulted to be <μ>=(0.67±0.02) cm^2/(V*s). By comparing this result with 2-point-probe measurements, we found that contact resistance effects led to a mobility overestimation in the latter. Ion accumulation at the drain contact creates a gate-dependent potential barrier and is discussed as a probable reason for the overestimation in 2-point-probe measurements. The measured charge transport properties of PEDOT:PSS were analyzed in the framework of an extended drift-diffusion model. The extended model fits well also to the non-linear response in the transport characterization and results suggest a Gaussian DOS for PEDOT:PSS. The PEDOT:PSS-electrolyte interface capacitance resulted to be voltage-independent, confirming the hypothesis of its morphological origin, related to the separation between the electronic (PEDOT) and ionic (PSS) phases in the blend.