997 resultados para Electroless composite
Resumo:
The electrochemistry and electrogenerated chemilurninescence (ECL) of tris(2,2-bipyridyl)ruthenium(II) ion-exchanged in Eastman-AQ-carbon nanotube (CNT) composite films were investigated at a glassy carbon (GC) electrode. Eastman-AQ55D is a poly (ester sulfonic acid) cation exchanger available in a commercial dissolved form. It is much more hydrophilic than Nafion due to its unique structure, so Ru(bpy)(3)(2+) does not diffuse into the hydrophobic region where it may lose its electroactivity as that in Nafion. The interfused CNT could act as electronic wires that connect the electrode with Ru(bpy)(3)(2+), which made the composite film much more electronically which finally led to the increasing of Ru(bpy)(3)(2+) conductive. Besides, the negatively charged CNT could also absorb some Ru(bpy)(3)(2+). Moreover, the strong electrostatic interaction between AQ and Ru(bpy)(3)(2+) made the composite films much more stable. The combination of AQ and CNT brings excellent sensitivity with the detection limit as low as 3 x 10(-11) M for TPA.
Resumo:
AB(2-x)%LaNi5 (x =0, 1, 5, 10) composite alloys were prepared by melting Zr0.9Ti0.1Ni1.1Mn0.6V0.3 with a small amount of LaNi5 alloy as addition. The microstructure and electrochemical characteristics of the composite alloys were investigated by means of XRD, SEM, EDS and electrochemical measurements. It was shown that LaNi5 addition does not change the basic hexagonal C14 Laves phase of AB(2) alloys, but some second phases have segregated. It was found that the addition of LaNi5 greatly improves the activation property, high-rate dischargeability (HRD) and charge-discharge cycling stability of AB(2) Laves phase alloy. At current density of 1200 mA/g, HRD of the alloy increases from 38.92% (x =0) to 60.09% (x = 10). The capacity retention of the alloy after 200 charge-discharge cycles increases from 57. 10% (x = 0) to 83.86% (x = 5) and 67.31% (x = 10). The improvement of the electrochemical characteristics caused by LaNi5 addition seems to be related to formation of the second phases.
Resumo:
A series of La2O3-ZrO2-CeO2 composite oxides were synthesized by solid-state reaction. The final product keeps fluorite structure when the molar ratio Ce/Zr >= 0.7/0.3, and below this ratio only mixtures of La2Zr2O7 (pyrochlore) and La2O3-CeO2 (fluorite) exist. Averagely speaking, the increase of CeO2 content gives rise to the increase of thermal expansion coefficient and the reduction of thermal conductivity, but La-2(Zr0.7Ce0.3)(2)O-7 has the lowest sintering ability and the lowest thermal conductivity which could be explained by the theory of phonon scattering. Based on the large thermal expansion coefficient of La2Ce3.25O9.5, the low thermal conductivities and low sintering abilities of La2Zr2O7 and La-2(Zr0.7Ce0.3)(2)O-7, double-ceramic-layer thermal barrier coatings were prepared. The thermal cycling tests indicate that such a design can largely improve the thermal cycling lives of the coatings. Since no single material that has been studied so far satisfies all the requirements for high temperature thermal barrier coatings, double-ceramic-layer coating may be an important development direction of thermal barrier coatings.
Resumo:
A series of novel ternary polyimide/SiO2/polydiphenylsiloxane (PI/SiO2/PDPhS) composite films were prepared through co-hydrolysis and condensation between tetramethoxysilane, diphenyldimethoxysilane (DDS) and aminopropyltriethoxysilane-terminated polyamic acid, using an in situ sol-gel method. The composite films exhibited good optical transparency up to 30 wt% of total content of DDS and SiO2. SEM analysis showed that the PDPhS and SiO2 were well dispersed in the PI matrix without macroscopic separation of the composite films. TGA analysis indicated that the introduction of SiO2 could improve the thermal stability of the composite films. Dynamic mechanical thermal analysis showed that the composite films with low DDS content (5 wt%) had a higher glass transition temperature (T-g) than pure PI matrix. When the content of DDS was above 10 wt%, the T-g of the composite decreased slightly due to the plasticizing effect of flexible PDPhS linkages on the rigid PI chains. The composite films with high SiO2 content exhibited higher values of storage modulus. Tensile measurements also showed that the modulus and tensile strength of the composite films increased with increasing SiO2 content, and the composite films still retained a high elongation at break due the introduction of DDS.
Resumo:
A series of novel polyimide/polydiphenylsiloxane) (PI/PDDS) composite films with different contents of DDS were prepared using sol-gel method. The noncrosslinked PI-DDS and crosslinked PIS-DDS were synthesized through cohydrolysis and condensation between DDS and polyamic acid (PAA) or aminopropyltriethoxysilane(APTES)-terminated polyamic acid (PAAS). All the composite films have high thermal stability near pure PI. Field emission scanning electron microscopy (FE-SEM) study shows that the polysiloxane from hydrolyzed DDS well dispersed in polyimide matrix, without macroscopic separation for the composite films with low content of DDS, while large domain of polysiloxane was formed in films with high DDS content. The microstructure of composite films is in accordance with the transparency of corresponding films. X-ray study shows the PDDS is amorphous in PI matrix. The introduction of DDS into PI can improve the elongation at break and at the same time, the composite films still remained with higher modulus and tensile strength. The density and water absorption of the composite films decreased with the increasing DDS content. The composite films with DDS content below 10 wt % exhibit good solvent resistance.
Resumo:
A new type of sol-gel-derived titanium oxide/copolymer composite material was developed and used for the construction of glucose biosensor. The composite material merged the best properties of the inorganic species, titanium oxide and the organic copolymer, poly(vinyl alcohol) grafting 4-vinylpyridine (PVA-g-PVP). The glucose oxidase entrapped in the composite matrix retained its bioactivity. Morphologies of the composite-modified electrode and the enzyme electrode were characterized with a scanning electron microscope. The dependence of the current responses on enzyme-loading and pH was studied. The response time of the biosensor was < 20 s and the linear range was up to 9 mM with a sensitivity of 405 nA/mM. The biosensor was stable for at least I month. In addition, the tetrathiafulvalene-mediated enzyme electrode was constructed for the decrease of detection potential and the effect of three common physiological sources that might interfere was also investigated.
Resumo:
A novel type of biochemical oxygen demand (BOD) biosensor was developed for water monitor, based on co-immobilizing of Trichosporon cutaneum and Bacillus subtilis in the sol-gel derived composite material which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)). Factors that influence the performance of the resulting biosensor were examined. The biodegradable substrate spectrum could be expanded by the co-immobilized microorganisms. The biosensor prepared also exhibited good reproducibility and long-term stability. Good agreement was obtained between the results of the sensor BOD measurement and those obtained from conventional BOD5 method for water samples.
Resumo:
An electrochemiluminescence (ECL) sensor with good long-term stability and fast response time has been developed. The sensor was based on the immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) into the Eastman-AQ55D-silica composite thin films on a glassy carbon electrode. The ECL and electrochemistry of Ru(bpy)(3)(2+) immobilized in the composite thin films have been investigated, and the modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and chlorpromazine (CPZ) in a flow injection analysis system and showed high sensitivity. Because of the strong electrostatic interaction and low hydrophobicity of Eastman-AQ55D, the sensor showed no loss of response over 2 months of dry storage. In use, the electrode showed only a 5% decrease in response over 100 potential cycles. The detection limit was 1 mumol l(-1) for oxalate and 0.1 mumol l(-1) for both TPA and CPZ (S/N = 3), respectively. The linear range extended from 50 mumol l(-1) to 5 mmol l(-1) for oxalate, from 20 mumol l(-1) to 1 mmol l(-1) for TPA, and from 1 mumol l(-1) to 200 mumol l(-1) for CPZ.
Resumo:
A new type of organically modified sol-gel/chitosan composite material was developed and used for the construction of glucose biosensor. This material provided good biocompatibility and the stabilizing microenvironment around the enzyme. Ferrocene was immobilized on the surface of glassy carbon electrode as a mediator. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The effects of enzyme-loading, buffer pH, applied potential and several interferences on the response of the enzyme electrode were investigated. The simple and low-cost glucose biosensor exhibited high sensitivity and good stability.
Resumo:
A new method for the fabrication of an integrated microelectrode for electrochemical detection (ECD) on an electrophoresis microchip is described. The pattern of the microelectrode was directly made on the surface of a microscope slide through an electroless deposition procedure. The surface of the slide was first selectively coated with a thin layer of sodium silicate through a micromolding in capillary technique provided by a poly(dimethylsiloxane) (PDMS) microchannel; this left a rough patterned area for the anchoring of catalytic particles. A metal layer was deposited on the pattern guided by these catalytic particles and was used as the working electrode. Factors influencing the fabrication procedure were discussed. The whole chip was built by reversibly sealing the slide to another PDMS layer with electrophoresis microchannels at room temperature. This approach eliminates the need of clean room facilities and expensive apparatus such as for vacuum deposition or sputtering and makes it possible to produce patterned electrodes suitable for ECD on microchip under ordinary chemistry laboratory conditions. Also once the micropattern is ready, it allows the researchers to rebuild the electrode in a short period of time when an electrode failure occurs. Copper and gold microelectrodes were fabricated by this technique. Glucose, dopamine, and catechol as model analytes were tested.
Resumo:
In this paper, we report the construction and application of a sol-gel derived carbon composite electrode (CCE) as an amperometric detector for capillary electrophoresis. The electrochemical properties were characterized and compared with those of conventional carbon fiber and carbon paste electrode (CPE). Experimental results show that peak-to-peak noise of CCE was about 20% of CPE and electrode capacitance was comparatively low. When applied to the detection of dopamine and epinephrine, the optimal detection potential for CCE was 0.1 V lower than CPE under the same separation conditions; CCE with diameter of 75 and 100 mum could achieve a low detection limit of 3.10(-8) and 6.10(-8) M for the detection of epinephrine, which approaching that of the 33-mum diameter carbon fiber electrode. Also, the linearity for epinephrine at CCE was more than two orders of magnitude, which was slightly wider than that of carbon fiber electrode. Applications to real sample analysis were tested by the determination of betahistine dihydrochloride in tablets and human urine. Using CCE with diameter less than or equal to100 mum as an amperometric detector after capillary electrophoresis separation, a low detection limit and a wide linear range combined with excellent reproducibility were obtained. This CCE possesses of many advantages, namely, convenience, ease of fabrication, low cost and high stability.
Resumo:
This paper reports an aggregation-based method for the fabrication of composite Au/Ag nanoshells with tunable thickness and surface roughness. It is found that the resultant roughened composite Au/Ag nanoshells can attract each other spontaneously to form films at the air-water interface. Importantly, such films can be transferred onto the solid substrates without being destroyed and show excellent surface-enhanced Raman scattering (SERS) enhancement ability. Their strong enhancement ability may stem from the unique two-dimensional structure itself.
Resumo:
Novel composite resins possessing good luminescent properties have been synthesized through a free radical copolymerization of styrene, alpha-methylacrylic acid and the binary or ternary complexes of lanthanide ions (Eu3+ and Tb3+). These polymer-based composite resins not only possess good transparency and mechanical performance but also exhibit an intense narrow band emission of lanthanide complexes under UV excitation. We characterized the molecular structure, physical and mechanical performance, and luminescent properties of the composite resins. Spectra investigations indicate that alpha-methyl-acrylic acid act as both solubilizer and ligand. Photoluminescence measurements indicate that the lanthanide complexes show superior emission lines and higher intensities in the resin matrix than in the corresponding pure complex powders, which can be attributed to the restriction of molecular motion of complexes by the polymer chain networks and the exclusion of water molecules from the complex. We also found that the luminescence intensity decreased with increasing content of alpha-methylacrylic acid in the copolymer system. The lifetime of the lanthanide complexes also lengthened when they were incorporated in the polymer matrix. In addition, we found that the relationships between emission intensity and Tb (Eu) content exhibit some extent of concentration quenching.
Resumo:
For improving the electrode characteristics of the Zr-based AB(2)-type alloy, a new kind of composite hydrogen Zr0.9Ti0.1(Ni0.50Mn0.35V0.15)(2)(represented as AB(2)) with a rare storage alloy was successfully prepared by ball-milling I earth-based AB(5)-type alloy (represented as AB(5)) which worked as a surface modifier. Effects of ball-milling on the electrode characteristics and microstructure of Zr0.9Ti0.1(Ni0.50Mn0.35V0.15)(2) alloy and mixtures of AB(2) with AB(5) alloy were investigated. After milling the mixed AB(2) and AB(5) powders (9: 1 in mass ratio) for 10min, XRD and SEM analysis showed that AB(2) and AB(5) maintained their original crystalline states, respectively, some AB(5) particles were adhered onto the surface of AB(2), and some fresh surfaces were formed. It was found that the activation cycles of AB(2)-AB(5) composite alloy was shortened from 14 to 7 and the maximum discharge capacity was increased from 330mAh . g(-1) to 347mAh . g(-1) as compared with AB(2) alloy. The discharge rate capability of AB(2) alloy was also improved by ball milling AB(2) with AB(5) alloy process. The combined effect of ball-milling and mixing with AB(5) alloy is superior to that of sole treatment. It was believed that AB(5) alloy works not only as a regular hydrogen storage alloy, but also as a surface modifier to catalyze the hydriding/ dehydriding process of AB(2) alloy.