876 resultados para Electrochemical water treatment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper characterises nitrogen and phosphorus wash-off processes on urban road surfaces to create fundamental knowledge to strengthen stormwater treatment design. The study outcomes confirmed that the composition of initially available nutrients in terms of their physical association with solids and chemical speciation determines the wash-off characteristics. Nitrogen and phosphorus wash-off processes are independent of land use, but there are notable differences. Nitrogen wash-off is a “source limiting” process while phosphorus wash-off is “transport limiting”. Additionally, a clear separation between nitrogen and phosphorus wash-off processes based on dissolved and particulate forms confirmed that the common approach of replicating nutrients wash-off based on solids wash-off could lead to misleading outcomes particularly in the case of nitrogen. Nitrogen is present primarily in dissolved and organic form and readily removed even by low intensity rainfall events, which is an important consideration for nitrogen removal targeted treatment design. In the case of phosphorus, phosphate constitutes the primary species in wash-off for the particle size fraction <75 µm, while other species are predominant in particle size range >75 µm. This means that phosphorus removal targeted treatment design should consider both phosphorus speciation as well as particle size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this systematic review was to examine the effect of Contrast Water Therapy (CWT) on recovery following exercise induced muscle damage. Controlled trials were identified from computerized literature searching and citation tracking performed up to February 2013. Eighteen trials met the inclusion criteria; all had a high risk of bias. Pooled data from 13 studies showed that CWT resulted in significantly greater improvements in muscle soreness at the five follow-up time points(<6, 24, 48, 72 and 96 hours) in comparison to passive recovery. Pooled data also showed that CWT significantly reduced muscle strength loss at each follow-up time (<6, 24, 48, 72 and 96 hours) in comparison to passive recovery. Despite comparing CWT to a large number of other recovery interventions, including cold water immersion, warm water immersion, compression, active recovery and stretching, there was little evidence for a superior treatment intervention. The current evidence base shows that CWT is superior to using passive recovery or rest after exercise; the magnitudes of these effects may be most relevant to an elite sporting population. There seems to be little difference in recovery outcome between CWT and other popular recovery interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to cold air, whole body cryotherapy (WBC), is a novel treatment employed by athletes. In WBC individuals dressed in minimal clothing are exposed to a temperature below -100°C for 2-4 min. The use of WBC has been advocated as a treatment for various knee injuries. PURPOSE: To compare the effects of two modalities of cryotherapy, -110°C WBC and 8°C cold water immersion (CWI) on knee skin temperature (Tsk). METHODS: With ethical approval and written informed consent 10 healthy active male participants (26.5±4.9 yr, 183.5±6.0 cm, 90.7±19.9 kg, 26.8±5.0 kg/m2, 23.0±9.3% body fat (measured by DXA), 7.6 ± 2.0 mm patellar skin fold; mean±SD) were exposed to 4 min of CWI and WBC. The treatment order was randomised in a controlled crossover design, with a minimum of 7 days between treatments. During WBC participants stood in a chamber (-60±3°C) for 20 s before entering the main chamber (-110°C±3°C) where they remained for 3 min and 40 s. For CWI participants were seated in a tank filled with cold water (8±0.3°C) and immersed to the level of the sternum for 4 min. Right knee Tsk was assessed via non-contact, infrared thermal imaging. A quadrilateral region of interest was created using inert markers placed 5 cm above and below the most superior and inferior aspect of the patella. Tsk within this quadrilateral was recorded pre, immediately post and every 10 min thereafter for 60 min. Tsk changes were examined using a two-way (treatment x time) repeated measures analyses of variance. In addition, a paired sample t-test was used to compare baseline Tsk before both treatments. RESULTS: Knee Tsk was similar before treatment (WBC: 29.9±0.7°C, CWI: 29.6±0.9°C, p>0.05). There was a significant main effect for treatment (p<0.05) and time (p<0.001). Compared to baseline, Tsk was significantly reduced (p<0.05) immediately post and at 10, 20, 30, 40, 50 and 60 min after both cooling modalities. Knee Tsk was lower (p<0.05) immediately after WBC (19.0±0.9°C) compared to CWI (20.5±0.6°C). However, from 10 to 60 min post, knee Tsk was lower (p<0.05) following the CWI treatment. CONCLUSION: WBC elicited a greater decrease in knee Tsk compared to CWI immediately after treatment. However, both modalities display different recovery patterns and Tsk after CWI was significantly lower than WBC at 10, 20, 30, 40, 50 and 60 min after treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to develop software that is capable of back projecting primary fluence images obtained from EPID measurements through phantom and patient geometries in order to calculate 3D dose distributions. In the first instance, we aim to develop a tool for pretreatment verification in IMRT. In our approach, a Geant4 application is used to back project primary fluence values from each EPID pixel towards the source. Each beam is considered to be polyenergetic, with a spectrum obtained from Monte Carlo calculations for the LINAC in question. At each step of the ray tracing process, the energy differential fluence is corrected for attenuation and beam divergence. Subsequently, the TERMA is calculated and accumulated to an energy differential 3D TERMA distribution. This distribution is then convolved with monoenergetic point spread kernels, thus generating energy differential 3D dose distributions. The resulting dose distributions are accumulated to yield the total dose distribution, which can then be used for pre-treatment verification of IMRT plans. Preliminary results were obtained for a test EPID image comprised of 100 9 100 pixels of unity fluence. Back projection of this field into a 30 cm9 30 cm 9 30 cm water phantom was performed, with TERMA distributions obtained in approximately 10 min (running on a single core of a 3 GHz processor). Point spread kernels for monoenergetic photons in water were calculated using a separate Geant4 application. Following convolution and summation, the resulting 3D dose distribution produced familiar build-up and penumbral features. In order to validate the dose model we will use EPID images recorded without any attenuating material in the beam for a number of MLC defined square fields. The dose distributions in water will be calculated and compared to TPS predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background WSUD implementation in the Gold Coast City Council area commenced more than a decade ago. As a result, Council is expected to be in possession of WSUD assets valued at over tens of million dollars. The Gold Coast City Council is responsible for the maintenance and long-term management of these WSUD assets. Any shortcoming in implementation of best WSUD practices can potentially result in substantial liabilities and ineffective expenditure for the Council in addition to reduced efficiencies and outcomes. This highlights the importance of periodic auditing of WSUD implementation. Project scope The overall study entailed the following tasks: * A state-of-the-art literature review of the conceptual hydraulic and water quality treatment principles, current state of knowledge in relation to industry standards, best practice and identification of knowledge gaps in relation to maintenance and management practices and potential barriers to the implementation of WSUD. * Council stakeholder interviews to understand current practical issues in relation to the implementation of WSUD and the process of WSUD application from development application approval to asset management. * Field auditing of selected WSUD systems for condition assessment and identification of possible strengths and weaknesses in implementation. * Review of the Land Development Guidelines in order to identify any gaps and to propose recommendations for improvement. Conclusions Given below is a consolidated summary of the findings of the study undertaken. State-of-the-art literature review Though the conceptual framework for WSUD implementation is well established, the underlying theoretical knowledge underpinning the treatment processes and maintenance regimes and life cycle costing are still not well understood. Essentially, these are the recurring themes in the literature, namely, the inadequate understanding of treatment processes and lack of guidance to ensure specificity of maintenance regimes and life cycle costing of WSUDs. The fundamental barriers to successful WSUD implementation are: * Lack of knowledge transfer – This essentially relates to the lack of appropriate dissemination of research outcomes and the common absence of protocols for knowledge transfer within the same organisation. * Cultural barriers – These relate to social and institutional factors, including institutional inertia and the lack of clear understanding of the benefits. * Fragmented responsibilities – This results from poor administrative integration within local councils in relation to WSUDs. * Technical barriers – These relate to lack of knowledge on operational and maintenance practices which is compounded by model limitations and the lack of long-term quantitative performance evaluation data. * Lack of engineering standards – Despite the availability of numerous guidelines which are non-enforceable and can sometimes be confusing, there is a need for stringent engineering standards. The knowledge gaps in relation to WSUDs are only closing very slowly. Some of the common knowledge gaps identified in recent publications have been recognised almost a decade ago. The key knowledge gaps identified in the published literature are: * lack of knowledge on operational and maintenance practices; * lack of reliable methodology for identifying life cycle issues including costs; * lack of technical knowledge on system performance; * lack of guidance on retrofitting in existing developments. Based on the review of barriers to WSUD implementation and current knowledge gaps, the following were identified as core areas for further investigation: * performance evaluation of WSUD devices to enhance model development and to assess their viability in the context of environmental, economic and social drivers; establishing realistic life cycle costs to strengthen maintenance and asset management practices; * development of guidelines specific to retrofitting in view of the unique challenges posed by existing urban precincts together with guidance to ensure site specificity; establishment of a process for knowledge translation for enhancing currently available best practice guidelines; * identification of drivers and overcoming of barriers in the areas of institutional fragmentation, knowledge gaps and awareness of WSUD practices. GCCC stakeholder interviews Fourteen staff members involved in WSUD systems management in the Gold Coast City Council, representing four Directorates were interviewed using a standard questionnaire. The primary issues identified by the stakeholders were: * standardisation of WSUD terminology; * clear protocols for safeguarding devices during the construction phase; * engagement of all council stakeholders in the WSUD process from the initial phase; * limitations in the Land Development Guidelines; * ensuring public safety through design; * system siting to avoid conflicts with environmental and public use of open space; * provision of adequate access for maintenance; * integration of social and ecosystem issues to ensure long-term viability of systems in relation to both, vandalism and visual recreation; * lack of performance monitoring and inadequacy of the maintenance budget; * lack of technical training for staff involved in WSUD design approvals and maintenance; incentives for developers for acting responsibly in stormwater management. Field auditing of WSUD systems A representative cross section of WSUD systems in the Gold Coast were audited in the field. The following strengths and weaknesses in WSUD implementation were noted: * The implementation of WSUD systems in the field is not consistent. * The concerns raised by the stakeholders during the interviews in relation to WSUD implementation was validated from the observations from the field auditing, particularly in relation to the following: * safeguarding of devices during the construction phase * public safety * accessibility for maintenance * lack of performance monitoring by Council to assess system performance * inadequate maintenance of existing systems to suit site specific requirements. * A treatment train approach is not being consistently adopted. * Most of the systems audited have satisfactorily catered for public safety. Accessibility for maintenance has been satisfactorily catered for in most of the systems that were audited. * Systems are being commissioned prior to construction activities being substantially completed. * The hydraulic design of most systems appears to be satisfactory. * The design intent of the systems is not always clear. Review of Land Development Guidelines The Land Development Guidelines (TDG) was extensively reviewed and the following primary issues were noted in relation to WSUD implementation: * the LDG appears to have been prepared primarily to provide guidance to developers. It is not clear to what extent the guidelines are applicable to Council staff involved in WSUD maintenance and management; * Section 13 is very voluminous and appears to be a compilation of a series of individual documents resulting in difficulties in locating specific information, a lack of integration and duplication of information; * the LDG has been developed with a primary focus on new urban precinct development and the retrofitting of systems in existing developments has not been specifically discussed; * WSUDs are discussed in two different sections in the LDG and it is not clear which section takes precedence as there are inconsistencies between the two sections; there is inconsistent terminology being used; * there is a need for consolidation of information provided in different sections in the LDG; * there are inconsistencies in the design criteria provided; * there is a need for regular updating of the LDG to ensure that the information provided encompasses the state-of-the-art; * there is limited guidance provided for the preparation of maintenance plans and life cycle costing to assist developers in asset handover and to assist Council staff in assessment. * Based on these observations, eleven recommendations have been provided which are discussed below. Additionally, the stakeholder provided the following specific comments during the interviews in relation to the LDG: * lack of flexibility to cover the different stages of the life cycle of the systems; * no differentiation in projects undertaken by developers and Council; * inadequate information with regards to safety issues such as maximum standing water depth, fencing and safety barriers and public access; * lack of detailed design criteria in relation to Crime Prevention through Environmental Design, safety, amenity, environment, surrounding uses and impacts on surroundings; * inadequate information regarding maintenance requirements specific to the assessment and compliance phases; * recommendations for plantings are based primarily on landscape requirements rather than pollutant uptake capability. Recommendations With regards to the Land Development Guidelines, the following specific recommendations are provided: 1. the relevant sections and their extent of applicability to Council should be clearly identified; 2. integration of the different subsections within Section 13 and re-formatting the document for easy reference; 3. the maintenance guidelines provided in Section 13 should be translated to a maintenance manual for guidance of Council staff; 4. should consider extending the Guidelines to specifically encompass retrofitting of WSUD systems to existing urban precincts; 5. Section 3 needs to be revised to be made consistent with Section 13, to ensure priority for WSUD practices in urban precincts and to move away from conventional stormwater drainage design such as kerb and channelling; 6. it would also be good to specify as to which Section takes predominance in relation to stormwater drainage. It is expected that Section 13 would take predominance over the other sections in the LDG; 7. terminology needs to be made consistent to avoid confusion among developers and Council staff. Water Sensitive Urban Design is the term commonly used in Australia for stormwater quality treatment, rather than Stormwater Quality Improvement Devices. This once again underlines the need for ensuring consistency between Section 3 and Section 13; 8. it would also be good if there is a glossary of commonly used terms in relation to WSUD for use by all stakeholders and which should also be reflected in the LDG; 9. consolidation of all WSUD information into one section should be considered together with appropriate indicators in other LDG Sections regarding the availability of WSUD information. Ensuring consistency in the information provided is implied; 10. Section 13 should be updated at regular intervals to ensure the incorporation of the latest in research outcomes and incorporating criteria and guidance based on the state-of-the-art knowledge. The updating could be undertaken, say, in five year cycles. This would help to overcome the current lack of knowledge transfer; 11. the Council should consider commissioning specialised studies to extend the current knowledge base in relation to WSUD maintenance and life cycle costing. Additionally, Recommendation 10 is also applicable in this instance. The following additional recommendations are made based on the state-of-the-art literature review, stakeholder interviews and field auditing of WSUD systems: 1. Performance monitoring of existing systems to assess improvements to water quality, identify modifications and enhancements to improve performance; 2. Appropriate and monitored maintenance during different phases of development of built assets over time is needed to investigate the most appropriate time/phase of development to commission the final WSUD asset. 3. Undertake focussed investigations in the areas of WSUD maintenance and asset management in order to establish more realistic life cycle costs of systems and maintenance schedules; 4. the engagement of all relevant Council stakeholders from the initial stage of concept planning through to asset handover, and ongoing monitoring. This close engagement of internal stakeholders will assist in building a greater understanding of responsibilities and contribute to overcoming constraints imposed by fragmented responsibilities; 5. the undertaking of a public education program to inform the community of the benefits and ecosystem functions of WSUD systems; 6. technical training to impart state-of-the-art knowledge to staff involved in the approval of designs and maintenance and management of WSUD projects; 7. during the construction phase, it is important to ensure that appropriate measures to safeguard WSUD devices are implemented; 8. risks associated with potential public access to open water zones should be minimised with the application of appropriate safety measures; 9. system siting should ensure that potential conflicts are avoided with respect to public and ecosystem needs; 10. integration of social and ecosystem issues to ensure long-term viability of systems; provide incentives to developers who are proactive and responsible in the area of stormwater management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach for identifying the limit states of resilience in a water supply system when influenced by different types of pressure (disturbing) forces. Understanding of systemic resilience facilitates identification of the trigger points for early managerial action to avoid further loss of ability to provide satisfactory service availability when the ability to supply water is under pressure. The approach proposed here is to illustrate the usefulness of a surrogate measure of resilience depicted in a three dimensional space encompassing independent pressure factors. That enables visualisation of the transition of the system-state (resilience) between high to low resilience regions and acts as an early warning trigger for decision-making. The necessity of a surrogate measure arises as a means of linking resilience to the identified pressures as resilience cannot be measured directly. The basis for identifying the resilience surrogate and exploring the interconnected relationships within the complete system, is derived from a meta-system model consisting of three nested sub-systems representing the water catchment and reservoir; treatment plant; and the distribution system and end-users. This approach can be used as a framework for assessing levels of resilience in different infrastructure systems by identifying a surrogate measure and its relationship to relevant pressures acting on the system.