874 resultados para Electricity Demand, Causality, Cointegration Analysis
Resumo:
Current guidelines have advised against the performance of (131)I-iodide diagnostic whole body scintigraphy (dxWBS) to minimize the occurrence of stunning, and to guarantee the efficiency of radioiodine therapy (RIT). The aim of the study was to evaluate the impact of stunning on the efficacy of RIT and disease outcome. This retrospective analysis included 208 patients with differentiated thyroid cancer managed according to a same protocol and followed up for 12-159 months (mean 30 ± 69 months). Patients received RIT in doses ranging from 3,700 to 11,100 MBq (100 mCi to 300 mCi). Post-RIT-whole body scintigraphy images were performed 10 days after RIT in all patients. In addition, images were also performed 24-48 hours after therapy in 22 patients. Outcome was classified as no evidence of disease (NED), stable disease (SD) and progressive disease (PD). Thyroid stunning occurred in 40 patients (19.2%), including 26 patients with NED and 14 patients with SD. A multivariate analysis showed no association between disease outcome and the occurrence of stunning (p = 0.3476). The efficacy of RIT and disease outcome do not seem to be related to thyroid stunning.
Resumo:
We report on a new analysis of neutrino oscillations in MINOS using the complete set of accelerator and atmospheric data. The analysis combines the ν(μ) disappearance and ν(e) appearance data using the three-flavor formalism. We measure |Δm(32)(2)| = [2.28-2.46] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.35-0.65 (90% C.L.) in the normal hierarchy, and |Δm(32)(2)| = [2.32-2.53] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.34-0.67 (90% C.L.) in the inverted hierarchy. The data also constrain δ(CP), the θ(23} octant degeneracy and the mass hierarchy; we disfavor 36% (11%) of this three-parameter space at 68% (90%) C.L.
Resumo:
To investigate the degree of T2 relaxometry changes over time in groups of patients with familial mesial temporal lobe epilepsy (FMTLE) and asymptomatic relatives. We conducted both cross-sectional and longitudinal analyses of T2 relaxometry with Aftervoxel, an in-house software for medical image visualization. The cross-sectional study included 35 subjects (26 with FMTLE and 9 asymptomatic relatives) and 40 controls; the longitudinal study was composed of 30 subjects (21 with FMTLE and 9 asymptomatic relatives; the mean time interval of MRIs was 4.4 ± 1.5 years) and 16 controls. To increase the size of our groups of patients and relatives, we combined data acquired in 2 scanners (2T and 3T) and obtained z-scores using their respective controls. General linear model on SPSS21® was used for statistical analysis. In the cross-sectional analysis, elevated T2 relaxometry was identified for subjects with seizures and intermediate values for asymptomatic relatives compared to controls. Subjects with MRI signs of hippocampal sclerosis presented elevated T2 relaxometry in the ipsilateral hippocampus, while patients and asymptomatic relatives with normal MRI presented elevated T2 values in the right hippocampus. The longitudinal analysis revealed a significant increase in T2 relaxometry for the ipsilateral hippocampus exclusively in patients with seizures. The longitudinal increase of T2 signal in patients with seizures suggests the existence of an interaction between ongoing seizures and the underlying pathology, causing progressive damage to the hippocampus. The identification of elevated T2 relaxometry in asymptomatic relatives and in patients with normal MRI suggests that genetic factors may be involved in the development of some mild hippocampal abnormalities in FMTLE.
Resumo:
High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.