899 resultados para Egg Load
Resumo:
This work aimed to evaluate the colour and texture of a Portuguese traditional sweet “egg chestnuts” along a storage period of 12 days under refrigeration. For this, the colour coordinates were measured through a colorimeter and the textural parameters were evaluated by compression and puncture tests using a textutrometer. The results showed that the colour coordinates do not vary along time, corresponding to very low values of total colour difference. Hardness, chewiness and springiness decreased in the first 3 days but after that the values were maintained approximately constant. In contrast, resilience and cohesiveness did not change along time. While crust firmness increased along storage, both the flesh firmness and stickiness did not change. The adhesiveness measured through the penetration test decreased considerably from the first to the last day. Hence, it was concluded that colour is better preserved than texture along a 12 day storage period under refrigeration.
Resumo:
The prevalence of keel bone damage as well as external egg parameters of 2 pure lines divergently selected for high (H) and low (L) bone strength were investigated in 2 aviary systems under commercial conditions. A standard LSL hybrid was used as a reference group. Birds were kept mixed per genetic line (77 hens of the H and L line and 201 or 206 hens of the LSL line, respectively, per pen) in 8 pens of 2 aviary systems differing in design. Keel bone status and body mass of 20 focal hens per line and pen were assessed at 17, 18, 23, 30, 36, 43, 52, and 63 wk of age. External egg parameters (i.e., egg mass, eggshell breaking strength, thickness, and mass) were measured using 10 eggs per line at both 38 and 57 wk of age. Body parameters (i.e. tarsus and third primary wing feather length to calculate index of wing loading) were recorded at 38 wk of age and mortality per genetic line throughout the laying cycle. Bone mineral density (BMD) of 15 keel bones per genetic line was measured after slaughter to confirm assignment of the experimental lines. We found a greater BMD in the H compared with the L and LSL lines. Fewer keel bone fractures and deviations, a poorer external egg quality, as well as a lower index of wing loading were found in the H compared with the L line. Mortality was lower and production parameters (e.g., laying performance) were higher in the LSL line compared with the 2 experimental lines. Aviary design affected prevalence of keel bone damage, body mass, and mortality. We conclude that selection of specific bone traits associated with bone strength as well as the related differences in body morphology (i.e., lower index of wing loading) have potential to reduce keel bone damage in commercial settings. Also, the housing environment (i.e., aviary design) may have additive effects.
Resumo:
Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sticklebacks. Grandparents were acclimated for two months during reproductive conditioning, whereas parents experienced developmental acclimation, allowing us to compare the fitness consequences of short-term vs. prolonged exposure to elevated temperature across multiple generations. We found that reproductive output of F1 adults was primarily determined by maternal developmental temperature, but carry-over effects from grandparental acclimation environments resulted in cumulative negative effects of elevated temperature on hatching success. In very early stages of growth, F2 offspring reached larger sizes in their respective paternal and grandparental environment down the paternal line, suggesting that other factors than just the paternal genome may be transferred between generations. In later growth stages, maternal and maternal granddam environments strongly influenced offspring body size, but in opposing directions, indicating that the mechanism(s) underlying the transfer of environmental information may have differed between acute and developmental acclimation experienced by the two generations. Taken together, our results suggest that the fitness consequences of parental and grandparental TGP are highly context dependent, but will play an important role in mediating some of the impacts of rapid climate change in this system.
Resumo:
1) Our study addresses the role of non-genetic and genetic inheritance in shaping the adaptive potential of populations under a warming ocean scenario. We used a combined experimental approach (transgenerational plasticity and quantitative genetics) to partition the relative contribution of maternal vs. paternal (additive genetic) effects to offspring body size (a key component of fitness), and investigated a potential physiological mechanism (mitochondrial respiration capacities) underlying whole organism growth/size responses. 2) In very early stages of growth (up to 30 days), offspring body size of marine sticklebacks benefited from maternal transgenerational plasticity (TGP): offspring of mothers acclimated to17°C were larger when reared at 17°C, and offspring of mothers acclimated to 21°C were larger when reared at 21°C. The benefits of maternal TGP on body size were stronger and persisted longer (up to 60 days) for offspring reared in the warmer (21°C) environment, suggesting that maternal effects will be highly relevant for climate change scenarios in this system. 3) Mitochondrial respiration capacities measured on mature offspring (F1 adults) matched the pattern of TGP for juvenile body size, providing an intuitive mechanistic basis for the maternal acclimation persisting into adulthood. Size differences between temperatures seen at early growth stages remained in the F1 adults, linking offspring body size to maternal inheritance of mitochondria. 4) Lower maternal variance components in the warmer environment were mostly driven by mothers acclimated to ambient (colder) conditions, further supporting our tenet that maternal effects were stronger at elevated temperature. Importantly, all parent-offspring temperature combination groups showed genotype x environment (GxE) interactions, suggesting that reaction norms have the potential to evolve. 5) To summarise, transgenerational plasticity and genotype x environment interactions work in concert to mediate impacts of ocean warming on metabolic capacity and early growth of marine sticklebacks. TGP can buffer short-term detrimental effects of climate warming and may buy time for genetic adaptation to catch up, therefore markedly contributing to the evolutionary potential and persistence of populations under climate change.
Resumo:
The anthropogenic release of carbon dioxide (CO2) into the atmosphere leads to an increase in the CO2 partial pressure (pCO2) in the ocean, which may reach 950 ?atm by the end of the 21st century. The resulting hypercapnia (high pCO2) and decreasing pH ("ocean acidification") are expected to have appreciable effects on water-breathing organisms, especially on their early-life stages. For organisms like squid that lay their eggs in coastal areas where the embryo and then paralarva are also exposed to metal contamination, there is a need for information on how ocean acidification may influence trace element bioaccumulation during their development. In this study, we investigated the effects of enhanced levels of pCO2 (380, 850 and 1500 ?atm corresponding to pHT of 8.1, 7.85 and 7.60) on the accumulation of dissolved 110mAg, 109Cd, 57Co, 203Hg, 54Mn and 65Zn radiotracers in the whole egg strand and in the different compartments of the egg of Loligo vulgaris during the embryonic development and also in hatchlings during their first days of paralarval life. Retention properties of the eggshell for 110mAg, 203Hg and 65Zn were affected by the pCO2 treatments. In the embryo, increasing seawater pCO2 enhanced the uptake of both 110mAg and 65Zn while 203Hg showed a minimum concentration factor (CF) at the intermediate pCO2. 65Zn incorporation in statoliths also increased with increasing pCO2. Conversely, uptake of 109Cd and 54Mn in the embryo decreased as a function of increasing pCO2. Only the accumulation of 57Co in embryos was not affected by increasing pCO2. In paralarvae, the CF of 110mAg increased with increasing pCO2, whereas the 57Co CF was reduced at the highest pCO2 and 203Hg showed a maximal uptake rate at the intermediate pCO2. 54Mn and 65Zn accumulation in paralarvae were not significantly modified by hypercapnic conditions. Our results suggest a combined effect of pH on the adsorption and protective properties of the eggshell and of hypercapnia on the metabolism of embryo and paralarvae, both causing changes to the accumulation of metals in the tissues of L. vulgaris.
Resumo:
THE AIM OF THE STUDY There are limited data on blood pressure targets and vasopressor use following cardiac arrest. We hypothesized that hypotension and high vasopressor load are associated with poor neurological outcome following out-of-hospital cardiac arrest (OHCA). METHODS We included 412 patients with OHCA included in FINNRESUSCI study conducted between 2010 and 2011. Hemodynamic data and vasopressor doses were collected electronically in one, two or five minute intervals. We evaluated thresholds for time-weighted (TW) mean arterial pressure (MAP) and outcome by receiver operating characteristic (ROC) curve analysis, and used multivariable analysis adjusting for co-morbidities, factors at resuscitation, an illness severity score, TW MAP and total vasopressor load (VL) to test associations with one-year neurologic outcome, dichotomized into either good (1-2) or poor (3-5) according to the cerebral performance category scale. RESULTS Of 412 patients, 169 patients had good and 243 patients had poor one-year outcomes. The lowest MAP during the first six hours was 58 (inter-quartile range [IQR] 56-61) mmHg in those with a poor outcome and 61 (59-63) mmHg in those with a good outcome (p<0.01), and lowest MAP was independently associated with poor outcome (OR 1.02 per mmHg, 95% CI 1.00-1.04, p=0.03). During the first 48h the median (IQR) of the TW mean MAP was 80 (78-82) mmHg in patients with poor, and 82 (81-83) mmHg in those with good outcomes (p=0.03) but in multivariable analysis TWA MAP was not associated with outcome. Vasopressor load did not predict one-year neurologic outcome. CONCLUSIONS Hypotension occurring during the first six hours after cardiac arrest is an independent predictor of poor one-year neurologic outcome. High vasopressor load was not associated with poor outcome and further randomized trials are needed to define optimal MAP targets in OHCA patients.