970 resultados para Eddy
Resumo:
The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300-600 m depth. Here, oxygen concentrations rarely fall below 40 µmol O2 kg-1, but are expected to decline under future projections of global warming. The recent discovery of mesoscale eddies that harbour a shallow suboxic (<5 µmol O2 kg-1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by on-going ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. At nighttime, when a large proportion of acoustic scatterers is ascending into the upper 150 m, a drastic reduction in mean volume backscattering (Sv, shipboard ADCP, 75kHz) within the shallow OMZ of the eddy was evident compared to the nighttime distribution outside the eddy. Acoustic scatterers were avoiding the depth range between about 85 to 120 m, where oxygen concentrations were lower than approximately 20 µmol O2 kg-1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time-series observations of a moored ADCP (upward looking, 300kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies have been identified to be followed by zooplankton in response to the eddy OMZ: i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids), ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods), iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes), and iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy i), ii) and iv), compression of the habitable volume in the surface may increase prey-predator encounter rates, rendering zooplankton and micronekton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 µmol O2 kg-1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton and micronekton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.
Resumo:
Localized open-ocean low-oxygen dead-zones in the tropical Northeast Atlantic are recently discovered ocean features that can develop in dynamically isolated water masses within cyclonic eddies (CE) and anticyclonic modewater eddies (ACME). Analysis of a comprehensive oxygen dataset obtained from gliders, moorings, research vessels and Argo floats revealed that eddies with low oxygen concentrations at 50-150 m depths can be found in surprisingly high numbers and in a large area (from about 4°N to 22°N, from the shelf at the eastern boundary to 38°W). Minimum oxygen concentrations of about 9 µmol kg-1 in CEs and severely suboxic concentrations (< 1 µmol kg-1) in ACMEs were observed. In total, 173 profiles with oxygen concentrations below the minimum background concentration of 40 µmol kg-1 could be associated with 27 independent "dead-zone" eddies (10 CEs; 17 ACMEs) over a period of 10 years. The eddies' oxygen minimum is located in the eddy core beneath the mixed layer at a mean depth of 80 m. Compared to the surrounding waters, the mean oxygen anomaly between 50 and 150 m depth for CEs (ACMEs) is -38 (-79) µmol kg-1. The low oxygen concentration right beneath the mixed layer has been attributed to the combination of high productivity in the eddies' surface waters and the isolation of their cores with respect to lateral oxygen supply. Indeed, eddies of both types feature a cold sea surface temperature anomaly and enhanced chlorophyll concentrations in their center. The locally increased consumption within these eddies represents an essential part of the total consumption in the open tropical Northeast Atlantic Ocean and might be partly responsible for the formation of the shallow oxygen minimum zone. Eddies south of 12°N carry weak hydrographic anomalies in their cores and seem to be generated in the open ocean away from the boundary. North of 12°N, eddies of both types carry anomalously low salinity water of South Atlantic Central Water origin from the eastern boundary upwelling region into the open ocean. Water mass properties and satellite eddy tracking both point to an eddy generation near the eastern boundary.
Resumo:
The physical (temperature, salinity, velocity) and biogeochemical (oxygen, nitrate) structure of an oxygen depleted coherent, baroclinic, anticyclonic mode-water eddy (ACME) is investigated using high-resolution autonomous glider and ship data. A distinct core with a diameter of about 70 km is found in the eddy, extending from about 60 to 200 m depth and. The core is occupied by fresh and cold water with low oxygen and high nitrate concentrations, and bordered by local maxima in buoyancy frequency. Velocity and property gradient sections show vertical layering at the flanks and underneath the eddy characteristic for vertical propagation (to several hundred-meters depth) of near inertial internal waves (NIW) and confirmed by direct current measurements. A narrow region exists at the outer edge of the eddy where NIW can propagate downward. NIW phase speed and mean flow are of similar magnitude and critical layer formation is expected to occur. An asymmetry in the NIW pattern is seen that possible relates to the large-scale Ekman transport interacting with ACME dynamics. NIW/mean flow induced mixing occurs close to the euphotic zone/mixed layer and upward nutrient flux is expected and supported by the observations. Combing high resolution nitrate (NO3-) data with the apparent oxygen utilization (AOU) reveals AOU:NO3- ratios of 16 which are much higher than in the surrounding waters (8.1). A maximum NO3- deficit of 4 to 6 µmol kg-1 is estimated for the low oxygen core. Denitrification would be a possible explanation. This study provides evidence that the recycling of NO3-, extracted from the eddy core and replenished into the core via the particle export, may quantitatively be more important. In this case, the particulate phase is of keys importance in decoupling the nitrogen from the oxygen cycling.
Resumo:
In 2008, the Oceanography Center at the University of Cyprus acquired two underwater gliders in the framework of a nationally-managed infrastructure upgrade program. The gliders were purchased from the Seaglider Fabrication Center at the University of Washington. Both gliders are rated to 1000 m and carry a typical sensor payload: non-pumped conductivity-temperature-depth sensors (CTD), a dissolved oxygen sensor, an optical triplet to measure optical backscatter at 400 nm, 700 nm, and chlorophyll-a fluorescence. Since March of 2009, the gliders have been used in a long-term observing program of the Cypriot EEZ, and by September 2015, have covered more than 15300 km over ground and 3500 dive cycles in 940 glider days. Butterfly patterns have been flown in two configurations, either on the western or eastern side of the EEZ south of Cyprus. The glider endurance lines criss-cross the region in order to more accurately locate and investigate the mesoscale structures south of Cyprus, and in particular the Cyprus eddy which is often the dominant feature. Based on the near real time observations, the glider mission was sometimes altered in order to more fully sample the Cyprus eddy, or to locate its center or extent. A summary of the raw and processed data collected, and the quality control procedures are presented, in order for future users to take advantage of this unique data set.
Resumo:
Several open-ocean mesoscale features, a "young" warm-core (or anti-cyclonic) eddy at 52°S, an "older" warm-core eddy at 57.5°S, as well as an adjacent cold-core (or cyclonic) eddy at 56°S, were surveyed during a R/V S.A. Agulhas II cruise in April 2014. The main aim of the survey was to obtain hydrographical and biogeochemical profile data for contrasting open-ocean eddies in the Southern Ocean, that will be suitable for comparison and modelling of their heat, salt and nutrient characteristics, and the changes that occur in these properties as warm-core eddies migrate from the polar front southwards into the Southern Ocean. A total of 18 CTD stations were occupied in a sector south of the South-West Indian Ridge, along three transects crossing several mesoscale features identified from satellite altimetry data prior to the cruise.
Resumo:
For the qualitative description of surface properties like vegetation cover or land-water-ratio of Samoylov Island as well as for the evaluation of fetch homogeneity considerations of the eddy covariance measurements and for the up-scaling of chamber flux measurements, a detailed surface classification of the island at the sub-polygonal scale is necessary. However, up to know only grey-scale Corona satellite images from the 1960s with a resolution of 2 x 2 m and recent multi-spectral LandSat images with a resolution of 30 x 30 m were available for this region. Both are not useable for the desired classification because of missing spectral information and inadequate resolution, respectively. During the Lena 2003 expedition, a survey of the island by air photography was carried out in order to obtain images for surface classification. The photographs were taken from a helicopter on 10.07.2002, using a Canon EOS100 reflex camera, a Soligor 19-23 mm lens and colour slide film. The height from which the photographs were taken was approximately 600 meters. Due to limited flight time, not all the area of the island could be photographed and some regions could only be photographed with a slanted view. As a result, the images are of a varying quality and resolution. In Potsdam, after processing the films were scanned using a Nikon LS-2000 scanner at maximal resolution setting. This resulted in a ground resolution of the scanned images of approximately 0.3x0.3 m. The images were subsequently geo-referenced using the ENVI software and a referenced Corona image dating from 18.07.1964 (Spott, 2003). Geo-referencing was only possible for the Holocene river terrace areas; the floodplain regions in the western part of the island could not be referenced due to the lack of ground reference points. In Figure 3.7-1, the aerial view of Samoylov Island composed of the geo-referenced images is shown. Further work is necessary for the classification and interpretation of the images. If possible, air photography surveys will be carried out during future expeditions in order to determine changes in surface pattern and composition.
Oxygen variance and meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone
Resumo:
The distribution of the mean oceanic oxygen concentration results from a balance between ventilation and consumption. In the eastern tropical Pacific and Atlantic, this balance creates extended oxygen minimum zones (OMZ) at intermediate depth. Here, we analyze hydrographic and velocity data from shipboard and moored observations, which were taken along the 23°W meridian cutting through the Tropical North East Atlantic (TNEA) OMZ, to study the distribution and generation of oxygen variability. By applying the extended Osborn-Cox model, the respective role of mesoscale stirring and diapycnal mixing in producing enhanced oxygen variability, found at the southern and upper boundary of the OMZ, is quantified. From the well-ventilated equatorial region toward the OMZ core a northward eddy-driven oxygen flux is observed whose divergence corresponds to an oxygen supply of about 2.4 µmol kg-1 year-1 at the OMZ core depth. Above the OMZ core, mesoscale eddies act to redistribute low- and high-oxygen waters associated with westward and eastward currents, respectively. Here, absolute values of the local oxygen supply >10 mmol kg-1 year-1 are found, likely balanced by mean zonal advection. Combining our results with recent studies, a refined oxygen budget for the TNEA OMZ is derived. Eddy-driven meridional oxygen supply contributes more than 50 % of the supply required to balance the estimated oxygen consumption. The oxygen tendency in the OMZ, as given by the multidecadal oxygen decline, is maximum slightly above the OMZ core and represents a substantial imbalance of the oxygen budget reaching about 20 % of the magnitude of the eddy-driven oxygen supply.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. Data sets in this collection provide methodological and environmental context to all samples collected during the Tara Oceans Expedition (2009-2013).
Resumo:
A large, subsurface oxygen deficiency zone is located in the eastern tropical South Pacific Ocean (ETSP). The large-scale circulation in the eastern equatorial Pacific and off Peru in November/December 2012 shows the influence of the equatorial current system, the eastern boundary currents, and the northern reaches of the subtropical gyre. In November 2012 the Equatorial Undercurrent is centered at 250 m depth, deeper than in earlier observations. In December 2012 the equatorial water is transported southeastward near the shelf in the Peru-Chile Undercurrent with a mean transport of 1.6 Sv. In the oxygen minimum zone (OMZ) the flow is overlaid with strong eddy activity on the poleward side of the OMZ. Floats with parking depth at 400 m show fast westward flow in the mid-depth equatorial channel and sluggish flow in the OMZ. Floats with oxygen sensors clearly show the passage of eddies with oxygen anomalies. The long-term float observations in the upper ocean lead to a net community production estimate at about 18° S of up to 16.7 mmol C m?3 yr1 extrapolated to an annual rate and 7.7 mmol C m?3 yr?1 for the time period below the mixed layer. Oxygen differences between repeated ship sections are influenced by the Interdecadal Pacific Oscillation, by the phase of El Niño, by seasonal changes, and by eddies and hence have to be interpreted with care. At and south of the equator the decrease in oxygen in the upper ocean since 1976 is related to an increase in nitrate, phosphate, and in part in silicate.