891 resultados para ENDOTHELIAL-CELL ADHESION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the formation of hydrogel monoliths formed by functionalized peptide Fmoc-RGD (Fmoc: fluorenylmethoxycarbonyl) containing the RGD cell adhesion tripeptide motif. The monolith is stable in water for nearly 40 days. The gel monoliths present a rigid porous structure consisting of a network of peptide fibers. The RGD-decorated peptide fibers have a β-sheet secondary structure. We prove that Fmoc-RGD monoliths can be used to release and encapsulate material, including model hydrophilic dyes and drug compounds. We provide the first insight into the correlation between the absorption and release kinetics of this new material and show that both processes take place over similar time scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: In rat middle cerebral and mesenteric arteries the KCa2.3 component of endothelium-dependent hyperpolarization (EDH) is lost following stimulation of thromboxane (TP) receptors, an effect that may contribute to the endothelial dysfunction associated with cardiovascular disease. In cerebral arteries, KCa2.3 loss is associated with NO synthase inhibition, but is restored if TP receptors are blocked. The Rho/Rho kinase pathway is central for TP signalling and statins indirectly inhibit this pathway. The possibility that Rho kinase inhibition and statins sustain KCa2.3 hyperpolarization was investigated in rat middle cerebral arteries (MCA). Methods: MCAs were mounted in a wire myograph. The PAR2 agonist, SLIGRL was used to stimulate EDH responses, assessed by simultaneous measurement of smooth muscle membrane potential and tension. TP expression was assessed with rt-PCR and immunofluorescence. Results: Immunofluorescence detected TP in the endothelial cell layer of MCA. Vasoconstriction to the TP agonist, U46619 was reduced by Rho kinase inhibition. TP receptor stimulation lead to loss of KCa2.3 mediated hyperpolarization, an effect that was reversed by Rho kinase inhibitors or simvastatin. KCa2.3 activity was lost in L-NAME-treated arteries, but was restored by Rho kinase inhibition or statin treatment. The restorative effect of simvastatin was blocked after incubation with geranylgeranyl-pyrophosphate to circumvent loss of isoprenylation. Conclusions: Rho/Rho kinase signalling following TP stimulation and L-NAME regulates endothelial cell KCa2.3 function. The ability of statins to prevent isoprenylation and perhaps inhibit of Rho restores/protects the input of KCa2.3 to EDH in the MCA, and represents a beneficial pleiotropic effect of statin treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Fibroblast growth factor 9 (FGF9) is secreted from bone marrow cells, which have been shown to improve systolic function after myocardial infarction (MI) in a clinical trial. FGF9 promotes cardiac vascularization during embryonic development but is only weakly expressed in the adult heart. METHODS AND RESULTS: We used a tetracycline-responsive binary transgene system based on the α-myosin heavy chain promoter to test whether conditional expression of FGF9 in the adult myocardium supports adaptation after MI. In sham-operated mice, transgenic FGF9 stimulated left ventricular hypertrophy with microvessel expansion and preserved systolic and diastolic function. After coronary artery ligation, transgenic FGF9 enhanced hypertrophy of the noninfarcted left ventricular myocardium with increased microvessel density, reduced interstitial fibrosis, attenuated fetal gene expression, and improved systolic function. Heart failure mortality after MI was markedly reduced by transgenic FGF9, whereas rupture rates were not affected. Adenoviral FGF9 gene transfer after MI similarly promoted left ventricular hypertrophy with improved systolic function and reduced heart failure mortality. Mechanistically, FGF9 stimulated proliferation and network formation of endothelial cells but induced no direct hypertrophic effects in neonatal or adult rat cardiomyocytes in vitro. FGF9-stimulated endothelial cell supernatants, however, induced cardiomyocyte hypertrophy via paracrine release of bone morphogenetic protein 6. In accord with this observation, expression of bone morphogenetic protein 6 and phosphorylation of its downstream targets SMAD1/5 were increased in the myocardium of FGF9 transgenic mice. CONCLUSIONS: Conditional expression of FGF9 promotes myocardial vascularization and hypertrophy with enhanced systolic function and reduced heart failure mortality after MI. These observations suggest a previously unrecognized therapeutic potential for FGF9 after MI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing use of patterned neural networks in multielectrode arrays and similar devices drives the constant development and evaluation of new biomaterials. Recently, we presented a promising technique to guide neurons and glia reliably and effectively. Parylene-C, a common hydrophobic polymer, was photolithographically patterned on silicon oxide (SiO2) and subsequently activated via immersion in serum. In this article, we explore the effects of ultraviolet (UV)-induced oxidation on parylene's ability to pattern neurons and glia. We exposed parylene-C stripe patterns to increasing levels of UV radiation and found a dose-dependent reduction in the total mass of patterned cells, as well as a gradual loss of glial and neuronal conformity to the patterns. In contrast, nonirradiated patterns had superior patterning results and increased presence of cells. The reduced cell adhesion and patterning after the formation of aldehyde and carboxyl groups on UV-radiated parylene-C supports our hypothesis that cell adhesion and growth on parylene is facilitated by hydrophobic adsorption of serum proteins. We conclude that unlike other cell patterning schemes, our technique does not rely on photooxidation of the polymer. Nonetheless, the precise control of oxygenated groups on parylene could pave the way for the differential binding of proteins and other molecules on the surface, aiding in the adhesion of alternative cell types. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here, we studied the self-assembly of two peptide amphiphiles, C16-Gly-Gly-Gly-Arg-Gly- Asp (PA 1: C16-GGG-RGD) and C16-Gly-Gly-Gly-Arg-Gly-Asp-Ser (PA 2: C16-GGG-RGDS).We showed that PA 1 and PA 2 self-assemble into nanotapes with an internal bilayer structure. C16 chains were highly interdigitated within the nanotape cores, while the peptide blocks formed water-exposed b-sheets too. PA 1 nanotapes were characterized by one spacing distribution, corresponding to a more regular internal structure than that of PA 2 nanotapes, which presented two different spacing distributions. We showed that it is possible to obtain homogeneous nanotapes in water by co-assembling PA 1 or PA 2 with the negatively charged diluent C16-Glu-Thr-Thr-Glu- Ser (PA 3: C16-ETTES). The homogeneous tapes formed by PA 1–PA 3 or PA 2–PA 3 mixtures presented a structure similar to that observed for the corresponding pure PA 1 or PA 2 nanotapes. The mixed nanotapes, which were able to form a stabilized matrix containing homogeneously distributed cell adhesive RGD groups, represent promising materials for designing new cell adhesion substrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Observed associations between increased fruit and vegetable (F&V) consumption, particularly those F&Vs that are rich in flavonoids, and vascular health improvements require confirmation in adequately powered randomized controlled trials. OBJECTIVE: This study was designed to measure the dose-response relation between high-flavonoid (HF), low-flavonoid (LF), and habitual F&V intakes and vascular function and other cardiovascular disease (CVD) risk indicators. DESIGN: A single-blind, dose-dependent, parallel randomized controlled dietary intervention study was conducted. Male and female low-F&V consumers who had a ≥1.5-fold increased risk of CVD (n = 174) were randomly assigned to receive an HF F&V, an LF F&V, or a habitual diet, with HF and LF F&V amounts sequentially increasing by 2, 4, and 6 (+2, +4, and +6) portions/d every 6 wk over habitual intakes. Microvascular reactivity (laser Doppler imaging with iontophoresis), arterial stiffness [pulse wave velocity, pulse wave analysis (PWA)], 24-h ambulatory blood pressure, and biomarkers of nitric oxide (NO), vascular function, and inflammation were determined at baseline and at 6, 12, and 18 wk. RESULTS: In men, the HF F&V diet increased endothelium-dependent microvascular reactivity (P = 0.017) with +2 portions/d (at 6 wk) and reduced C-reactive protein (P = 0.001), E-selectin (P = 0.0005), and vascular cell adhesion molecule (P = 0.0468) with +4 portions/d (at 12 wk). HF F&Vs increased plasma NO (P = 0.0243) with +4 portions/d (at 12 wk) in the group as a whole. An increase in F&Vs, regardless of flavonoid content in the groups as a whole, mitigated increases in vascular stiffness measured by PWA (P = 0.0065) and reductions in NO (P = 0.0299) in the control group. CONCLUSION: These data support recommendations to increase F&V intake to ≥6 portions daily, with additional benefit from F&Vs that are rich in flavonoids, particularly in men with an increased risk of CVD. This trial was registered at www.controlled-trials.com as ISRCTN47748735.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A candidate live vaccine for avian pathogenic Escherichia coli (APEC) was constructed from a virulent field APEC O78 strain by mutation of the aroA gene. The mutant was highly similar to the parent wild-type strain in respect of colony morphology, motility, growth in suspension, hemagglutination, Congo Red binding, HEp-2 cell adhesion, and the elaboration of surface antigens type 1 fimbriae and flagella, although production of curli fimbriae was reduced marginally. The mutant proved avirulent when inoculated into 1-day-old chicks by spray application and when presented again in the drinking water at 7 days of age. Chickens and turkeys vaccinated with an O78 aroA mutant were protected against a challenge at 6 wk of age by virulent APEC strains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The incorporation of small bioactive peptide motifs within robust hydrogels constitutes a facile procedure to chemically functionalise cell and tissue scaffolds. In this study, a novel approach to utilise Fmoc-linked peptide amphiphiles comprising the bio-functional cell-adhesion RGDS motif within biomimetic collagen gels was developed. The composite scaffolds thus created were shown to maintain the mechanical properties of the collagen gel while presenting additional bio-activity. In particular, these materials enhanced the adhesion and proliferation of viable human corneal stromal fibroblasts by 300% compared to nonfunctionalised gels. Furthermore, the incorporation of Fmoc-RGDS nanostructures within the collagen matrix significantly suppressed gel shrinkage resulting from the contractile action of encapsulated fibroblasts once activated by serum proteins. These mechanical and biological properties demonstrate that the incorporation of peptide amphiphiles provides a suitable and easy method to circumvent specific biomaterial limitations, such as cell-derived shrinkage, for improved performance in tissue engineering and regenerative medicine applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Integrin-linked kinase (ILK) and its associated complex of proteins are involved in many cellular activation processes, including cell adhesion and integrin signaling. We have previously demonstrated that mice with induced platelet ILK deficiency show reduced platelet activation and aggregation, but only a minor bleeding defect. Here, we explore this apparent disparity between the cellular and hemostatic phenotypes. METHODS: The impact of ILK inhibition on integrin αII b β3 activation and degranulation was assessed with the ILK-specific inhibitor QLT0267, and a conditional ILK-deficient mouse model was used to assess the impact of ILK deficiency on in vivo platelet aggregation and thrombus formation. RESULTS: Inhibition of ILK reduced the rate of both fibrinogen binding and α-granule secretion, but was accompanied by only a moderate reduction in the maximum extent of platelet activation or aggregation in vitro. The reduction in the rate of fibrinogen binding occurred prior to degranulation or translocation of αII b β3 to the platelet surface. The change in the rate of platelet activation in the absence of functional ILK led to a reduction in platelet aggregation in vivo, but did not change the size of thrombi formed following laser injury of the cremaster arteriole wall in ILK-deficient mice. It did, however, result in a marked decrease in the stability of thrombi formed in ILK-deficient mice. CONCLUSION: Taken together, the findings of this study indicate that, although ILK is not essential for platelet activation, it plays a critical role in facilitating rapid platelet activation, which is essential for stable thrombus formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bacterial plant pathogen Pseudomonas syringae pv. phaseolicola (Pph) colonises the surface of common bean plants before moving into the interior of plant tissue, via wounds and stomata. In the intercellular spaces the pathogen proliferates in the apoplastic fluid and forms microcolonies (biofilms) around plant cells. If the pathogen can suppress the plant’s natural resistance response, it will cause halo blight disease. The process of resistance suppression is fairly well understood, but the mechanisms used by the pathogen in colonisation are less clear. We hypothesised that we could apply in vitro genetic screens to look for changes in motility, colony formation, and adhesion, which are proxies for infection, microcolony formation and cell adhesion. We made transposon (Tn) mutant libraries of Pph strains 1448A and 1302A and found 106/1920 mutants exhibited alterations in colony morphology, motility and biofilm formation. Identification of the insertion point of the Tn identified within the genome highlighted, as expected, a number of altered motility mutants bearing mutations in genes encoding various parts of the flagellum. Genes involved in nutrient biosynthesis, membrane associated proteins, and a number of conserved hypothetical protein (CHP) genes were also identified. A mutation of one CHP gene caused a positive increase in in planta bacterial growth. This rapid and inexpensive screening method allows the discovery of genes important for in vitro traits that can be correlated to roles in the plant interaction

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed at investigating in vitro osteogenesis on three fluorcanasite glass-ceramic compositions with different solubilities (K3, K5, and K8). Osteoblastic cells were obtained from human alveolar bone fragments and cultured under standard osteogenic condition until subconfluence. First passage cells were cultured on K3, K5, and K8 and on Bioglass (R) 45S5 (45S5-control). Cell adhesion was evaluated at 24 h. For proliferation and viability, cells were cultured for 1, 4, and 10 days. Total protein content and alkaline phosphatase (ALP) activity were measured at 7, 14, and 21 days. Cultures were stained with Alizarin red at 21 days, for detection of mineralized matrix. Data were compared by ANOVA followed by Duncan`s test. Cell adhesion, cell proliferation, viability, total protein content, and ALP activity were not affected by fluorcanasite glass-ceramic composition and solubility. Bone-like formation was similar on all fluorcanasite-glass ceramics and was reduced compared to 45S5. The changes in the chemical composition and consequently solubility of the fluorcanasite glass-ceramics tested here did not significantly alter the in vitro osteogenesis. Further modifications of the chemical composition of the fluorcanasite glass-ceramic would be required to improve bone response, making this biomaterial a good candidate to be employed as a bone substitute.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genetic mutations responsible for oblique facial clefts (ObFC), a unique class of facial malformations, are largely unknown. We show that loss-of-function mutations in SPECC1L. are pathogenic for this human developmental disorder and that SPECC1L is a critical organizer of vertebrate facial morphogenesis. During murine embryogenesis, Speed 1 1 is expressed in cell populations of the developing facial primordial, which proliferate and fuse to form the face. In zebrafish, knockdown of a SPECC1L homolog produces a faceless phenotype with loss of jaw and facial structures, and knockdown in Drosophila phenocopies mutants in the integrin signaling pathway that exhibit cell-migration and -adhesion defects. Furthermore, in mammalian cells, SPECC1L colocalizes with both tubulin and actin, and its deficiency results in defective actin-cytoskeleton reorganization, as well as abnormal cell adhesion and migration. Collectively, these data demonstrate that SPECC1L functions in actin-cytoskeleton reorganization and is required for proper facial morphogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSC) are multipotent cells which can be obtained from several adult and fetal tissues including human umbilical cord units. We have recently shown that umbilical cord tissue (UC) is richer in MSC than umbilical cord blood (UCB) but their origin and characteristics in blood as compared to the cord remains unknown. Here we compared, for the first time, the exonic protein-coding and intronic noncoding RNA (ncRNA) expression profiles of MSC from match-paired UC and UCB samples, harvested from the same donors, processed simultaneously and under the same culture conditions. The patterns of intronic ncRNA expression in MSC from UC and UCB paired units were highly similar, indicative of their common donor origin. The respective exonic protein-coding transcript expression profiles, however, were significantly different. Hierarchical clustering based on protein-coding expression similarities grouped MSC according to their tissue location rather than original donor. Genes related to systems development, osteogenesis and immune system were expressed at higher levels in UCB, whereas genes related to cell adhesion, morphogenesis, secretion, angiogenesis and neurogenesis were more expressed in UC cells. These molecular differences verified in tissue-specific MSC gene expression may reflect functional activities influenced by distinct niches and should be considered when developing clinical protocols involving MSC from different sources. In addition, these findings reinforce our previous suggestion on the importance of banking the whole umbilical cord unit for research or future therapeutic use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cells recruited by the innate immune response rely on surface-expressed molecules in order to receive signals from the local environment and to perform phagocytosis, cell adhesion, and others processes linked to host defense. Hundreds of surface antigens designated through a cluster of differentiation (CD) number have been used to identify particular populations of leukocytes. Surprisingly, we verified that the genes that encode Cd36 and Cd83 are constitutively expressed in specific neuronal cells. For instance, Cd36 mRNA is expressed in some regions related to circuitry involved in pheromone responses and reproductive behavior. Cd44 expression, reanalyzed and detailed here, is associated with the laminar formation and midline thalamic nuclei in addition to striatum, extended amygdala, and a few hypothalamic, cortical, and hippocampal regions. A systemic immune challenge was able to increase Cd44 expression quickly in the area postrema and motor nucleus of the vagus but not in regions presenting expressive constitutive expression. In contrast to Cd36 and Cd44, Cd83 message was widely distributed from the olfactory bulb to the brain stem reticular formation, sparing the striatopallidum, olivary region, and cerebellum. Its pattern of expression nevertheless remained strongly associated with hypothalamic, thalamic, and hindbrain nuclei. Unlike the other transcripts, Cd83 mRNA was rapidly modulated by restraint stress. Our results indicate that these molecules might play a role in specific neural circuits and present functions other than those attributed to leukocyte biology. The data also suggest that these surface proteins, or their associated mRNA, could be used to label neurons in specific circuits/regions. J. Comp. Neurol. 517:906-924, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetic nanoparticles surface-functionalized with meso-2,3-dimercaptosuccinic acid (MNPs-DMSA) constitute an innovative and promising approach for tissue- and cell-targeted delivery of therapeutic drugs in the lung. Transendothelial migration of leukocytes in the lung is a side effect of endovenous administration of MNPs-DMSA. Using cytologic and phenotypic analysis of murine bronchoalveolar lavage cells, we identified monocytes/macrophages as the main subpopulation of leukocytes involved in this process. Moreover, ultrastructural analysis revealed the presence of nanoparticles inside of numerous macrophages from bronchoalveolar lavage. MNPs-DMSA at concentrations as high as 1 X 10(15) nanoparticles/mL had no toxic effects on macrophages, as evidenced by 3-(4, 5-dimethylthiazolyi-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Notably, MNPs-DMSA up-regulated the mRNA expression of E, L- and P-selectin and macrophage-1 antigen in the murine lung. Upregulation of these cell adhesion molecules was associated with an increased concentration of tumor necrosis factor-alpha in lung. Finally, the critical relevance of the beta(2) integrin-dependent pathway in leukocyte transmigration elicited by MNPs-DMSA was demonstrated by use of knockout mice. Our results characterize mechanisms of the pro-inflammatory effects of MNPs-DMSA in the lung, and identify beta(2) integrin-targeted interventions as promising strategies to reduce pulmonary side effects of MNPs-DMSA during biomedical applications. (C) 2009 Elsevier Ltd. All rights reserved.