996 resultados para EGF RECEPTOR
Resumo:
Clonally distributed inhibitory receptors negatively regulate natural killer (NK) cell function via specific interactions with allelic forms of major histocompatibility complex (MHC) class I molecules. In the mouse, the Ly-49 family of inhibitory receptors is found not only on NK cells but also on a minor (NK1.1+) T cell subset. Using Ly-49 transgenic mice, we show here that the development of NK1.1+ T cells, in contrast to NK or conventional T cells, is impaired when their Ly-49 receptors engage self-MHC class I molecules. Impaired NK1.1+ T cell development in transgenic mice is associated with a failure to select the appropriate CD1-reactive T cell receptor repertoire. In normal mice, NK1.1+ T cell maturation is accompanied by extinction of Ly-49 receptor expression. Collectively, our data imply that developmentally regulated extinction of inhibitory MHC-specific receptors is required for normal NK1.1+ T cell maturation and selection.
Resumo:
We provide the first evidence that point mutations can constitutively activate the beta(1)-adrenergic receptor (AR). Leucine 322 of the beta(1)-AR in the C-terminal portion of its third intracellular loop was replaced with seven amino acids (I, T, E, F, C, A and K) differing in their physico-chemical properties. The beta(1)-AR mutants expressed in HEK-293 cells displayed various levels of constitutive activity which could be partially inhibited by some beta-blockers. The results of this study might have interesting implications for future studies aiming at elucidating the activation process of the beta(1)-AR as well as the mechanism of action of beta-blockers.
Resumo:
Odorant receptor (OR) genes constitute with 1200 members the largest gene family in the mouse genome. A mature olfactory sensory neuron (OSN) is thought to express just one OR gene, and from one allele. The cell bodies of OSNs that express a given OR gene display a mosaic pattern within a particular region of the main olfactory epithelium. The mechanisms and cis-acting DNA elements that regulate the expression of one OR gene per OSN - OR gene choice - remain poorly understood. Here, we describe a reporter assay to identify minimal promoters for OR genes in transgenic mice, which are produced by the conventional method of pronuclear injection of DNA. The promoter transgenes are devoid of an OR coding sequence, and instead drive expression of the axonal marker tau-β-galactosidase. For four mouse OR genes (M71, M72, MOR23, and P3) and one human OR gene (hM72), a mosaic, OSN-specific pattern of reporter expression can be obtained in transgenic mice with contiguous DNA segments of only ~300 bp that are centered around the transcription start site (TSS). The ~150bp region upstream of the TSS contains three conserved sequence motifs, including homeodomain (HD) binding sites. Such HD binding sites are also present in the H and P elements, DNA sequences that are known to strongly influence OR gene expression. When a 19mer encompassing a HD binding site from the P element is multimerized nine times and added upstream of a MOR23 minigene that contains the MOR23 coding region, we observe a dramatic increase in the number of transgene-expressing founders and lines and in the number of labeled OSNs. By contrast, a nine times multimerized 19mer with a mutant HD binding site does not have these effects. We hypothesize that HD binding sites in the H and P elements and in OR promoters modulate the probability of OR gene choice.
Resumo:
Purpose. To investigate the effect of the endothelin(A) receptor inhibitor BQ-123 on the retinal arteriolar vasculature in minipig retinas in normal eyes and eyes with acute branch retinal vein occlusion (BRVO). Methods. Seven healthy eyes of seven minipigs and six eyes of six minipigs with experimental BRVO were evaluated under systemic anesthesia. An intravitreal juxta-arteriolar microinjection of 30 microL BQ-123 0.61 microg/mL (pH 7.4) was performed in all but one eye from each group, into which the physiologic saline vehicle alone was injected. Vessel-diameter changes were measured with a retinal vessel analyzer. Results. In healthy minipig retinas (n = 6), arteriolar diameter (+/-SD) increased 6.19% +/- 3.55% (P < 0.05), 25.98% +/- 2.37% (P < 0.001), 23.65% +/- 1.2% (P < 0.001), and 16.84% +/- 1.95% (P < 0.001), at 1, 5, 10, and 15 minutes, respectively, after BQ-123 microinjection. Two hours after experimental BRVO (n = 5), the retinal arteriolar diameter had decreased (13.07% +/- 5.7%; P < 0.01). One, 5, 10, and 15 minutes after BQ-123 microinjection, retinal arteriolar diameter had increased by 7.14% +/- 3.3% (P < 0.01), 26.74% +/- 7.63% (P < 0.001), 23.67% +/- 6.4% (P < 0.001), and 16.09% +/- 3.41% (P < 0.001), respectively. Vehicle only injection had no vasoactive effect on physiologic or BRVO retinas. Conclusions. A significant increase in retinal arteriolar diameter was demonstrated after juxta-arteriolar BQ-123 microinjection in healthy and in acute BRVO minipig retinas. The results suggest a role for endothelin-1 in maintaining retinal basal arteriolar tone. Reversing the BRVO-related vasoconstriction by juxta-arteriolar BQ-123 microinjection could bring a new perspective to the management of BRVO.
Resumo:
PURPOSE: Peptide receptor radionuclide therapy (PRRT) delivers high absorbed doses to kidneys and may lead to permanent nephropathy. Reliable dosimetry of kidneys is thus critical for safe and effective PRRT. The aim of this work was to assess the feasibility of planning PRRT based on 3D radiobiological dosimetry (3D-RD) in order to optimize both the amount of activity to administer and the fractionation scheme, while limiting the absorbed dose and the biological effective dose (BED) to the renal cortex. METHODS: Planar and SPECT data were available for a patient examined with (111)In-DTPA-octreotide at 0.5 (planar only), 4, 24, and 48 h post-injection. Absorbed dose and BED distributions were calculated for common therapeutic radionuclides, i.e., (111)In, (90)Y and (177)Lu, using the 3D-RD methodology. Dose-volume histograms were computed and mean absorbed doses to kidneys, renal cortices, and medullae were compared with results obtained using the MIRD schema (S-values) with the multiregion kidney dosimetry model. Two different treatment planning approaches based on (1) the fixed absorbed dose to the cortex and (2) the fixed BED to the cortex were then considered to optimize the activity to administer by varying the number of fractions. RESULTS: Mean absorbed doses calculated with 3D-RD were in good agreement with those obtained with S-value-based SPECT dosimetry for (90)Y and (177)Lu. Nevertheless, for (111)In, differences of 14% and 22% were found for the whole kidneys and the cortex, respectively. Moreover, the authors found that planar-based dosimetry systematically underestimates the absorbed dose in comparison with SPECT-based methods, up to 32%. Regarding the 3D-RD-based treatment planning using a fixed BED constraint to the renal cortex, the optimal number of fractions was found to be 3 or 4, depending on the radionuclide administered and the value of the fixed BED. Cumulative activities obtained using the proposed simulated treatment planning are compatible with real activities administered to patients in PRRT. CONCLUSIONS: The 3D-RD treatment planning approach based on the fixed BED was found to be the method of choice for clinical implementation in PRRT by providing realistic activity to administer and number of cycles. While dividing the activity in several cycles is important to reduce renal toxicity, the clinical outcome of fractionated PRRT should be investigated in the future.
Resumo:
Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.
Resumo:
The sense of touch relies on detection of mechanical stimuli by specialized mechanosensory neurons. The scarcity of molecular data has made it difficult to analyze development of mechanoreceptors and to define the basis of their diversity and function. We show that the transcription factor c-Maf/c-MAF is crucial for mechanosensory function in mice and humans. The development and function of several rapidly adapting mechanoreceptor types are disrupted in c-Maf mutant mice. In particular, Pacinian corpuscles, a type of mechanoreceptor specialized to detect high-frequency vibrations, are severely atrophied. In line with this, sensitivity to high-frequency vibration is reduced in humans carrying a dominant mutation in the c-MAF gene. Thus, our work identifies a key transcription factor specifying development and function of mechanoreceptors and their end organs.
Resumo:
Thyroid hormones, which play an important role in the development and regeneration of the nervous system, require the presence of specific nuclear T3 receptors (NT3R). In this study we provide evidence that NT3R expression by Schwann cells was up-regulated in response to a loss of axonal contact in vitro and in vivo. In dorsal root ganglia explant cultures, Schwann cells which accompanied axons (nerve fibres) were devoid of NT3R. When Schwann cells were orphaned from axon contact by axon transection, all the nuclei of these cells displayed NT3R immunoreactivity. Similar results were obtained in situ; in adult rat sciatic nerve, Schwann cells which ensheathed healthy axons never expressed NT3R immunoreactivity. After sciatic nerve transection in vivo the nuclei of Schwann cells deprived of axonal contact displayed a clear NT3R immunoreaction.
Resumo:
Background: In insects, like in most invertebrates, olfaction is the principal sensory modality, which provides animals with essential information for survival and reproduction. Odorant receptors are involved in this response, mediating interactions between an individual and its environment, as well as between individuals of the same or different species. The adaptive importance of odorant receptors renders them good candidates for having their variation shaped by natural selection. Methodology/Principal Findings: We analyzed nucleotide variation in a subset of eight Or genes located on the 3L chromosomal arm of Drosophila melanogaster in a derived population of this species and also in a population of Drosophila pseudoobscura. Some heterogeneity in the silent polymorphism to divergence ratio was detected in the D. melanogaster/D. simulans comparison, with a single gene (Or67b) contributing ~37% to the test statistic. However, no other signals of a very recent selective event were detected at this gene. In contrast, at the speciation timescale, the MK test uncovered the footprint of positive selection driving the evolution of two of the encoded proteins in both D. melanogaster ¿OR65c and OR67a ¿and D. pseudoobscura ¿OR65b1 and OR67c. Conclusions: The powerful polymorphism/divergence approach provided evidence for adaptive evolution at a rather high proportion of the Or genes studied after relatively recent speciation events. It did not provide, however, clear evidence for very recent selective events in either D. melanogaster or D. pseudoobscura.
Resumo:
Peroxisome proliferator activated receptors are ligand activated transcription factors belonging to the nuclear hormone receptor superfamily. Three cDNAs encoding such receptors have been isolated from Xenopus laevis (xPPAR alpha, beta, and gamma). Furthermore, the gene coding for xPPAR beta has been cloned, thus being the first member of this subfamily whose genomic organization has been solved. Functionally, xPPAR alpha as well as its mouse and rat homologs are thought to play an important role in lipid metabolism due to their ability to activate transcription of a reporter gene through the promoter of the acyl-CoA oxidase (ACO) gene. ACO catalyzes the rate limiting step in the peroxisomal beta-oxidation of fatty acids. Activation is achieved by the binding of xPPAR alpha on a regulatory element (DR1) found in the promoter region of this gene, xPPAR beta and gamma are also able to recognize the same type of element and are, as PPAR alpha, able to form heterodimers with retinoid X receptor. All three xPPARs appear to be activated by synthetic peroxisome proliferators as well as by naturally occurring fatty acids, suggesting that a common mode of action exists for all the members of this subfamily of nuclear hormone receptors.
Resumo:
L'ectodysplasine Al (EDA1 ou EDA), un ligand de la famille du TNF, et son récepteur EDAR favorisent le développement des poils, des dents et de plusieurs types de glandes. Chez l'humain, une déficience en EDA cause une dysplasie ectodermique liée à l'X, caractérisée par la genèse défectueuse des phanères. Les souris Tabby, déficientes en Eda, présentent des symptômes similaires. Nous démontrons que les souris Tabby sont en moyenne 7% plus légères que les contrôles au moment du sevrage. Ce phénotype ne dépend pas du génotype des petits, mais exclusivement de celui de la mère, suggérant que l'absence d'EDA perturbe la fonction mammaire. La glande mammaire se développe en plusieurs étapes, principalement à la puberté et pendant la grossesse. Nous avons généré des anticorps pour activer ou inhiber la signalisation d'EDAR. Les anticorps agonistes corrigent le développement de souris ou de chiens déficients en EDA, alors que les antagonistes provoquent une dysplasie ectodermique chez les souris saines. L'exposition répétée de souris Tabby aux anticorps agonistes après le sevrage accroît la taille et la fonction des glandes sébacées, démonstration pharmacologique qu'EDA contrôle l'homéostasie de la glande sébacée adulte. Ces outils seront utiles pour étudier la fonction d'EDA aux diverses étapes du développement de la glande mammaire. Fc-EDAl, un stimulateur d'EDAR, est en phase d'évaluation clinique. Nous avons montré que les structures dépendantes d'EDA qui se forment à différentes étapes du développement répondent à l'action du Fc-EDAl dans des fenêtres temporelles étroites ou larges. De plus, certaines structures peuvent être induites plusieurs jours après le début naturel de leur formation. Alors que la plupart des structures se forment suite à un seul jour d'activation d'EDAR, d'autre demandent un temps de stimulation plus long. La formation des dents est régulée par des signaux activateurs et inhibiteurs. Une forte stimulation d'EDAR spécifiquement appliquée aux deux premières molaires induit des signaux négatifs qui avortent la formation de la troisième molaire, alors qu'une forte stimulation donnée à la troisième molaire la rend hypertrophique tout en induisant parfois une quatrième molaire jamais observée chez les souris de type sauvage ou Tabby. EDA est donc un activateur important de la formation dentaire. Pris dans leur ensemble, ces résultats ont des implications pour la thérapie des dysplasies ectodermiques. - The TNF family ligand Ectodysplasin Al (EDA1 or EDA) and its receptor ED AR regulate embryonic development of hair, teeth and several types of glands. In humans, EDA mutations cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition characterized by defective development of skin appendages. £da-deficient (Tabby) mice suffer from similar defects. We observed that Tabby pups at weaning were on average 7% smaller than WT controls, a phenotype that was curiously not linked to the genotype of pups, but to that of mothers, suggesting decreased mammary gland function in the absence of EDA. Mammary glands develop in several steps, most of which are post-natal. We generated monoclonal antibodies to block or activate EDAR signaling. Agonist antibodies rescued developmental defects when administered timely in £cfo-deficient mice and dogs, whereas blocking antibodies induced ectodermal dysplasia in WT mice. Agonist antibodies administered after weaning in £da-deficient mice for several months markedly increased both size and function of sebaceous glands, providing the first demonstration that pharmacological activation of the EDAR pathway in adults can correct important aspects of the dry skin phenotype. This also highlights a role for EDA1 in the homeostasis of adult sebaceous glands. These tools will be useful to study the function of EDA 1 at different stages of mammary gland development. Another EDAR agonist, Fc-EDAl, is currently evaluated in clinical trials. We found that EDA 1-dependent structures forming at different time points during development can respond to Fc-EDAl during time response windows that are narrow or wide. Also, some structures can be triggered up to several days after their normal time of induction. While most structures could be rescued by a single day of EDAR signaling, others required longer exposure times to form. Tooth formation is regulated by activating and inhibitory signals that impact one on the other. When strong EDAR signals were specifically given to the first two molars, overwhelming inhibitory signals completely inhibited formation of the third molar. In contrast, strong signals specifically given to the third molar induced hypertrophy of the later with occasional appearance of a fourth molar never observed in WT or £da-deficient mice. This clearly positions EDA as an important activating signal in tooth formation. Taken together, these results have implications for the therapy of ectodermal dysplasias.
Resumo:
T-cell receptor affinity for self-antigen has an important role in establishing self-tolerance. Three transgenic mouse strains expressing antigens of variable affinity for the OVA transgenic-I T-cell receptor were generated to address how TCR affinity affects the efficiency of negative selection, the ability to prime an autoimmune response, and the elimination of the relevant target cell. Mice expressing antigens with an affinity just above the negative selection threshold exhibited the highest risk of developing experimental autoimmune diabetes. The data demonstrate that close to the affinity threshold for negative selection, sufficient numbers of self-reactive T cells escape deletion and create an increased risk for the development of autoimmunity.
Resumo:
A proliferation-inducing ligand (APRIL) is a ligand of the tumor necrosis factor (TNF) family that stimulates tumor cell growth in vitro and in vivo. Expression of APRIL is highly upregulated in many tumors including colon and prostate carcinomas. Here we identify B cell maturation antigen (BCMA) and transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI), two predicted members of the TNF receptor family, as receptors for APRIL. APRIL binds BCMA with higher affinity than TACI. A soluble form of BCMA, which inhibits the proliferative activity of APRIL in vitro, decreases tumor cell proliferation in nude mice. Growth of HT29 colon carcinoma cells is blocked when mice are treated once per week with the soluble receptor. These results suggest an important role for APRIL in tumorigenesis and point towards a novel anticancer strategy.
Interleukins (IL)-1 and IL-2 control IL-2 receptor alpha and beta expression in immature thymocytes.
Resumo:
Functional high-affinity interleukin-2 receptors (IL-2R) contain three transmembrane proteins, IL-2R alpha, beta and gamma. We have investigated the expression of IL-2R alpha and beta genes in immature mouse thymocytes. Previous work has shown that during differentiation these cells transiently express IL-2R alpha on their surface. Stimulation of IL-2R alpha+ and IL-2R alpha- immature thymocytes with phorbol 12-myristate 13-acetate and calcium ionophore induces synthesis of IL-2R alpha and IL-2R beta mRNA. Most of this response depends on autocrine stimulation by IL-2. IL-1 synergizes with IL-2 to induce a 120-fold increase in IL-2R alpha mRNA and a 14-fold increase in IL-2R beta mRNA levels. A large proportion of the stimulated cells contains both transcripts. These interleukins do not induce any differentiation to more mature phenotypes. Collectively, these results show that IL-2 plays a major role in the regulation of IL-2R expression in normal immature thymocyte. We suggest that this response to interleukins may be part of a homeostatic mechanism to increase the production of immature thymocytes during stress.
Resumo:
The caspase 8 inhibitor c-FLIP(L) can act in vitro as a molecular switch between cell death and growth signals transmitted by the death receptor Fas (CD95). To elucidate its function in vivo, transgenic mice were generated that overexpress c-FLIP(L) in the T-cell compartment (c-FLIP(L) Tg mice). As anticipated, FasL-induced apoptosis was inhibited in T cells from the c-FLIP(L) Tg mice. In contrast, activation-induced cell death of T cells in c-FLIP(L) Tg mice was unaffected, suggesting that this deletion process can proceed in the absence of active caspase 8. Accordingly, c-FLIP(L) Tg mice differed from Fas-deficient mice by showing no accumulation of B220(+) CD4(-) CD8(-) T cells. However, stimulation of T lymphocytes with suboptimal doses of anti-CD3 or antigen revealed increased proliferative responses in T cells from c-FLIP(L) Tg mice. Thus, a major role of c-FLIP(L) in vivo is the modulation of T-cell proliferation by decreasing the T-cell receptor signaling threshold.