953 resultados para Dwarf stars


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of the aluminium monofluoride molecule AlF by radiative association of the Al and F atoms is estimated. The radiative association of Al(P-2) and F(P-2) atoms is found to be dominated by the approach along the A(1) potential energy curve accompanied by spontaneous emission into the X-1 Sigma(+) ground state of the AlF. For temperatures ranging from 300 to 14 000 K, the rate coefficients are found to vary from 1.35 x 10(-17) to 9.31 x 10(-16) cm(3) s(-1), respectively. These values indicate that only a small amount of AlF molecules can be formed by radiative association in the inner envelope of carbon-rich stars and other hostile environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron, one of the micronutrients frequently found in low levels in tropical soils affects nutrition and productivity of coconut palm trees essentially cultivated in tropical climates. The objective of this research study was to evaluate the effect of boron on the nutritional status of the plant and its productivity when artificially applied to the culture soil. The experiment was carried out in a four year old, artificially irrigated, dwarf coconut palm orchard in Brazil, between January, 2005 and October, 2006. The soil was a red yellow Latosol (B: 0.18 mg dm(-3)). The treatments consisted in the application of five boron dosages: zero, 1, 2, 4, and 6 kg ha(-1). In the field, the treatments were arranged according to a completely randomized block design, with four replications. Boron (borax) dosages were applied in equal halves directly into the soil in the months of January and February of 2005. Boron concentration in the soil and plant and plant productivity were evaluated. The higher palm tree production was associated to levels of 0.6mg dm(-3) of B in the soil and 23.5mg kg(-1) in leaves. Ninety five percent of palm trees maximum production was obtained with the use of a boron dosage of 2,1kg ha(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an implementation of the F-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars. We searched a frequency f(0) range from 100 Hz to 1 kHz and the frequency dependent spindown f(1) range from -1.6(f(0)/100 Hz) x 10(-9) Hz s(-1) to zero. A large part of this frequency-spindown space was unexplored by any of the all-sky searches published so far. Our method consisted of a coherent search over two-day periods using the F-statistic, followed by a search for coincidences among the candidates from the two-day segments. We have introduced a number of novel techniques and algorithms that allow the use of the fast Fourier transform (FFT) algorithm in the coherent part of the search resulting in a fifty-fold speed-up in computation of the F-statistic with respect to the algorithm used in the other pipelines. No significant gravitational wave signal was found. The sensitivity of the search was estimated by injecting signals into the data. In the most sensitive parts of the detector band more than 90% of signals would have been detected with dimensionless gravitational-wave amplitude greater than 5 x 10(-24).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to similar to 2,254 h and a frequency-and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from similar to 0.6 x 10(-3) ls to similar to 6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3 x 10(-24) at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of a new, non-parametric method to reconstruct the Galactic dark matter profile directly from observations. Using the latest kinematic data to track the total gravitational potential and the observed distribution of stars and gas to set the baryonic component, we infer the dark matter contribution to the circular velocity across the Galaxy. The radial derivative of this dynamical contribution is then estimated to extract the dark matter profile. The innovative feature of our approach is that it makes no assumption on the functional form or shape of the profile, thus allowing for a clean determination with no theoretical bias. We illustrate the power of the method by constraining the spherical dark matter profile between 2.5 and 25 kpc away from the Galactic center. The results show that the proposed method, free of widely used assumptions, can already be applied to pinpoint the dark matter distribution in the Milky Way with competitive accuracy, and paves the way for future developments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The possibility of strange stars is one of the most important issues in the study of compact objects. Here we use the observations of the newly discovered millisecond x-ray pulsar SAX J1808.4-3658 to constrain the radius of the compact star. Comparing the mass-radius relation of SAX J1808.4-3658 with theoretical models for both neutron stars and strange stars, we argue that a strange star model could be more consistent with SAX J1808.4-3658, and suggest that it is a likely strange star candidate. Our results are useful in constraining microscopic chiral symmetry restoration parameters in the quantum chromodynamics (QCD) modeling of strange matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear medium effects in the neutrino cooling of neutron stars through the reaction channel γγ→π0 →ν Rν̄L(νLν̄R) are incorporated. Throughout the paper we discuss different possibilities of right-handed neutrinos, massive left-handed neutrinos, and standard massless left-handed neutrinos (reaction is then allowed only with medium modified vertices). It is demonstrated that multiparticle effects suppress the rate of this reaction channel in the dense hadron matter by 6-7 orders of magnitude that does not allow to decrease existing experimental upper limit on the corresponding π0νν̄ coupling. Other possibilities of the manifestation of the given reaction channel in different physical situations, e.g., in the quark color superconducting cores of the most massive neutron stars, are also discussed. We demonstrate that in the color-flavor-locked superconducting phase for temperatures T≲ 0.1-10 MeV (depending on the effective pion mass and the decay width) the process is feasibly the most efficient neutrino cooling process, although the absolute value of the reaction rate is rather small.