969 resultados para Drill, hydraulic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cochleostomy formation is a key stage of the cochlear implantation procedure. Minimizing the trauma sustained by the cochlea during this step is thought to be a critical feature in hearing preservation cochlear implantation. The aim of this paper is firstly, to assess the cochlea disturbances during manual and robotic cochleostomy formation. Secondly, to determine whether the use of a smart micro-drill is feasible during human cochlear implantation. Materials and methods: The disturbances within the cochlea during cochleostomy formation were analysed in a porcine specimen by creating a third window cochleostomy, preserving the underlying endosteal membrane, on the anterior aspect of the basal turn of the cochlea. A laser vibrometer was aimed at this third window, to assess its movement while a traditional cochleostomy was performed. Six cochleostomies were performed in total, three manually and three with a smart micro-drill. The mean and peak membrane movement was calculated for both manual and smart micro-drill arms, to represent the disturbances sustained within cochlea during cochleostomy formation. The smart micro-drill was further used to perform live human robotic cochleostomies on three adult patients who met the National Institute of Health and Clinical Excellence criteria for undergoing cochlear implantation. Results: In the porcine trial, the smart micro-drill preserved the endosteal membrane in all three cases. The velocity of movement of the endosteal membrane during manual cochleostomy is approximately 20 times higher on average and 100 times greater in peak velocity, than for robotic cochleostomy. The robot was safely utilized in theatre in all three cases and successfully created a bony cochleostomy while preserving the underlying endosteal membrane. Conclusions: Our experiments have revealed that controlling the force of drilling during cochleostomy formation and opening the endosteal membrane with a pick will minimize the trauma sustained by the cochlea by a factor of 20. Additionally, the smart micro-drill can safely perform a bony cochleostomy in humans under operative conditions and preserve the integrity of the underlying endosteal membrane. © W. S. Maney & Son Ltd 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes a surgical robotic device that is able to discriminate tissue interfaces and other controlling parameters ahead of the drill tip. The advantage in such a surgery is that the tissues at the interfaces can be preserved. A smart tool detects ahead of the tool point and is able to control the interaction with respect to the flexing tissue, to avoid penetration or to control the extent of protrusion with respect to the position of the tissue. For surgical procedures, where precision is required, the tool offers significant benefit. To interpret the drilling conditions and the conditions leading up to breakthrough at a tissue interface, a sensing scheme is used that discriminates between the variety of conditions posed in the drilling environment. The result is a fully autonomous system, which is able to respond to the tissue type, behaviour, and deflection in real-time. The system is also robust in terms of disturbances encountered in the operating theatre. The device is pragmatic. It is intuitive to use, efficient to set up, and uses standard drill bits. The micro-drill, which has been used to prepare cochleostomies in the theatre, was used to remove the bone tissue leaving the endosteal membrane intact. This has enabled the preservation of sterility and the drilling debris to be removed prior to the insertion of the electrode. It is expected that this technique will promote the preservation of hearing and reduce the possibility of complications. The article describes the device (including simulated drill progress and hardware set-up) and the stages leading up to its use in the theatre. © 2010 Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon capture and storage (CCS) can contribute significantly to addressing the global greenhouse gas (GHG) emissions problem. Despite widespread political support, CCS remains unknown to the general public. Public perception researchers have found that, when asked, the public is relatively unfamiliar with CCS yet many individuals voice specific safety concerns regarding the technology. We believe this leads many stakeholders conflate CCS with the better-known and more visible technology hydraulic fracturing (fracking). We support this with content analysis of media coverage, web analytics, and public lobbying records. Furthermore, we present results from a survey of United States residents. This first-of-its-kind survey assessed participants’ knowledge, opinions and support of CCS and fracking technologies. The survey showed that participants had more knowledge of fracking than CCS, and that knowledge of fracking made participants less willing to support CCS projects. Additionally, it showed that participants viewed the two technologies as having similar risks and similar risk intensities. In the CCS stakeholder literature, judgment and decision-making (JDM) frameworks are noticeably absent, and public perception is not discussed using any cognitive biases as a way of understanding or explaining irrational decisions, yet these survey results show evidence of both anchoring bias and the ambiguity effect. Public acceptance of CCS is essential for a national low-carbon future plan. In conclusion, we propose changes in communications and incentives as programs to increase support of CCS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drillhole-determined sea-ice thickness was compared with values derived remotely using a portable small-offset loop-loop steady state electromagnetic (EM) induction device during expeditions to Fram Strait and the Siberian Arctic, under typical winter and summer conditions. Simple empirical transformation equations are derived to convert measured apparent conductivity into ice thickness. Despite the extreme seasonal differences in sea-ice properties as revealed by ice core analysis, the transformation equations vary little for winter and summer. Thus, the EM induction technique operated on the ice surface in the horizontal dipole mode yields accurate results within 5 to 10% of the drillhole determined thickness over level ice in both seasons. The robustness of the induction method with respect to seasonal extremes is attributed to the low salinity of brine or meltwater filling the extensive pore space in summer. Thus, the average bulk ice conductivity for summer multiyear sea ice derived according to Archie's law amounts to 23 mS/m compared to 3 mS/m for winter conditions. These mean conductivities cause only minor differences in the EM response, as is shown by means of 1-D modeling. However, under summer conditions the range of ice conductivities is wider. Along with the widespread occurrence of surface melt ponds and freshwater lenses underneath the ice, this causes greater scatter in the apparent conductivity/ice thickness relation. This can result in higher deviations between EM-derived and drillhole determined thicknesses in summer than in winter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the framework of the ANDRILL Southern McMurdo Sound (SMS) Project successful downhole experiments were conducted in the 1138.54 metre (m)-deep AND-2A borehole. Wireline logs successfully recorded were: magnetic susceptibility, spectral gamma ray, sonic velocity, borehole televiewer, neutron porosity, density, calliper, geochemistry, temperature and dipmeter. A resistivity tool and its backup both failed to operate, thus resistivity data were not collected. Due to hole conditions, logs were collected in several passes from the total depth at ~1138 metres below sea floor (mbsf) to ~230 mbsf, except for some intervals that were either inaccessible due to bridging or were shielded by the drill string. Furthermore, a Vertical Seismic Profile (VSP) was created from ~1000 mbsf up to the sea floor. The first hydraulic fracturing stress measurements in Antarctica were conducted in the interval 1000-1138 mbsf. This extensive data set will allow the SMS Science Team to reach some of the ambitious objectives of the SMS Project. Valuable contributions can be expected for the following topics: cyclicity and climate change, heat flux and fluid flow, seismic stratigraphy in the Victoria Land Basin, and structure and state of the modern crustal stress field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ~3.3 Ma, followed by a coastal sea surface temperature cooling of ~2.5°C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world.