934 resultados para Drets humans -- Xina


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous theta burst stimulation (cTBS) is a repetitive transcranial magnetic stimulation protocol that can inhibithumanmotor cortex (M1) excitability and impair movement for ≤1 h. While offering valuable insights into brain function and potential therapeutic benefits, these neuroplastic effects are highly variable between individuals. The source of this variability, and the electrophysiological mechanisms underlying the inhibitory after-effects, are largely unknown. In this regard, oscillatory activity at beta frequency (15-35 Hz) is of particular interest as it is elevated in motor disorders such as Parkinson's disease and modulated during the generation of movements. Here, we used a source-level magnetoencephalography approach to investigate the hypothesis that the presence of neuroplastic effects following cTBS is associated with concurrent changes in oscillatory M1 beta activity. M1 cortices were localized with a synthetic aperture magnetometry beamforming analysis of visually cued index finger movements. Virtual electrode analysis was used to reconstruct the spontaneous and movement-related oscillatory activity in bilateral M1 cortices, before and from 10 to 45 min after cTBS. We demonstrate that 40 s of cTBS applied over left M1 reduced corticospinal excitability in the right index finger of 8/16 participants. In these responder participants only, cTBS increased the power of the spontaneous beta oscillations in stimulated M1 and delayed reaction times in the contralateral index finger. No further changes were observed in the latency or power of movement-related beta oscillations. These data provide insights into the electrophysiological mechanisms underlying cTBS-mediated impairment of motor function and demonstrate the association between spontaneous oscillatory beta activity in M1 and the inhibition of motor function. © 2013 the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The posterior inferior frontal gyrus (pIFG) and anterior inferior parietal lobule (aIPL) form the core regions of the human “mirror neuron system” that matches an observed movement onto its internal motor representation. We used event-related functional MRI to examine whether simple intransitive finger movements evoke “mirror activity” in the pIFG and aIPL. In separate sessions, participants either merely observed visuospatial stimuli or responded to them as quickly as possible with a spatially compatible finger movement. A picture of a relaxed hand with static dots on the tip of the index and little finger was continuously presented as high-level baseline. Four types of stimuli were presented in a pseudorandom order: a color change of a dot, a moving finger, a moving dot, or a simultaneous finger-dot movement. Dot movements were spatially and kinematically matched to finger movements. Participants were faster at imitating a finger movement than performing the same movement in response to a moving dot or a color change of a dot. Though imitative responses were facilitated, fMRI revealed no additional “mirror activity” in the pIFG and aIPL during the observation or imitation of finger movements as opposed to observing or responding to a moving dot. Mere observation of a finger movement alone failed to induce significant activation of the pIFG and aIPL. The lack of a signature of “mirror neuron activity” in the inferior frontoparietal cortex is presumably due to specific features of the task which may have favored stimulus–response mapping based on common spatial coding. We propose that the responsiveness of human frontoparietal mirror neuron areas to simple intransitive movements critically depends on the experimental context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of attentional limitations, the human visual system can process for awareness and response only a fraction of the input received. Lesion and functional imaging studies have identified frontal, temporal, and parietal areas as playing a major role in the attentional control of visual processing, but very little is known about how these areas interact to form a dynamic attentional network. We hypothesized that the network communicates by means of neural phase synchronization, and we used magnetoencephalography to study transient long-range interarea phase coupling in a well studied attentionally taxing dual-target task (attentional blink). Our results reveal that communication within the fronto-parieto-temporal attentional network proceeds via transient long-range phase synchronization in the beta band. Changes in synchronization reflect changes in the attentional demands of the task and are directly related to behavioral performance. Thus, we show how attentional limitations arise from the way in which the subsystems of the attentional network interact. The human brain faces an inestimable task of reducing a potentially overloading amount of input into a manageable flow of information that reflects both the current needs of the organism and the external demands placed on it. This task is accomplished via a ubiquitous construct known as “attention,” whose mechanism, although well characterized behaviorally, is far from understood at the neurophysiological level. Whereas attempts to identify particular neural structures involved in the operation of attention have met with considerable success (1-5) and have resulted in the identification of frontal, parietal, and temporal regions, far less is known about the interaction among these structures in a way that can account for the task-dependent successes and failures of attention. The goal of the present research was, thus, to unravel the means by which the subsystems making up the human attentional network communicate and to relate the temporal dynamics of their communication to observed attentional limitations in humans. A prime candidate for communication among distributed systems in the human brain is neural synchronization (for review, see ref. 6). Indeed, a number of studies provide converging evidence that long-range interarea communication is related to synchronized oscillatory activity (refs. 7-14; for review, see ref. 15). To determine whether neural synchronization plays a role in attentional control, we placed humans in an attentionally demanding task and used magnetoencephalography (MEG) to track interarea communication by means of neural synchronization. In particular, we presented 10 healthy subjects with two visual target letters embedded in streams of 13 distractor letters, appearing at a rate of seven per second. The targets were separated in time by a single distractor. This condition leads to the “attentional blink” (AB), a well studied dual-task phenomenon showing the reduced ability to report the second of two targets when an interval <500 ms separates them (16-18). Importantly, the AB does not prevent perceptual processing of missed target stimuli but only their conscious report (19), demonstrating the attentional nature of this effect and making it a good candidate for the purpose of our investigation. Although numerous studies have investigated factors, e.g., stimulus and timing parameters, that manipulate the magnitude of a particular AB outcome, few have sought to characterize the neural state under which “standard” AB parameters produce an inability to report the second target on some trials but not others. We hypothesized that the different attentional states leading to different behavioral outcomes (second target reported correctly or not) are characterized by specific patterns of transient long-range synchronization between brain areas involved in target processing. Showing the hypothesized correspondence between states of neural synchronization and human behavior in an attentional task entails two demonstrations. First, it needs to be demonstrated that cortical areas that are suspected to be involved in visual-attention tasks, and the AB in particular, interact by means of neural synchronization. This demonstration is particularly important because previous brain-imaging studies (e.g., ref. 5) only showed that the respective areas are active within a rather large time window in the same task and not that they are concurrently active and actually create an interactive network. Second, it needs to be demonstrated that the pattern of neural synchronization is sensitive to the behavioral outcome; specifically, the ability to correctly identify the second of two rapidly succeeding visual targets

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Mobile phones (MP) are used extensively and yet little is known about the effects they may have on human physiology. There have been conflicting reports regarding the relation between MP use and the electroencephalogram (EEG). The present study suggests that this conflict may be due to methodological differences such as exposure durations, and tests whether exposure to an active MP affects EEG as a function of time. METHODS: Twenty-four subjects participated in a single-blind fully counterbalanced cross-over design, where both resting EEG and phase-locked neural responses to auditory stimuli were measured while a MP was either operating or turned off. RESULTS: MP exposure altered resting EEG, decreasing 1-4 Hz activity (right hemisphere sites), and increasing 8-12 Hz activity as a function of exposure duration (midline posterior sites). MP exposure also altered early phase-locked neural responses, attenuating the normal response decrement over time in the 4-8 Hz band, decreasing the response in the 1230 Hz band globally and as a function of time, and increasing midline frontal and lateral posterior responses in the 30-45 Hz band. CONCLUSIONS: Active MPs affect neural function in humans and do so as a function of exposure duration. The temporal nature of this effect may contribute to the lack of consistent results reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Peroxiredoxin (PRDX) and thioredoxin (TRX) are antioxidant proteins that control cellular signalling and redox balance, although their response to exercise is unknown. This study aimed to assess key aspects of the PRDX-TRX redox cycle in response to three different modes of exercise. Methods. Healthy males (n = 10, mean ± SD: 22 ± 3 yrs) undertook three exercise trials on separate days: two steady-state cycling trials at moderate (60% VO2MAX; 27 min, MOD) and high (80% VO2MAX; 20 min, HIGH) intensities, and a low-volume high-intensity interval training trial (10 × 1 min 90% VO2MAX, LV-HIIT). Peripheral blood mononuclear cells were assessed for TRX-1 and over-oxidised PRDX (isoforms I-IV) protein expression before, during, and 30 min following exercise (post + 30). The activities of TRX reductase (TRX-R) and the nuclear factor kappa B (NF-κB) p65 subunit were also assessed. Results. TRX-1 increased during exercise in all trials (MOD, + 84.5%; HIGH, + 64.1%; LV-HIIT, + 205.7%; p < 05), whereas over-oxidised PRDX increased during HIGH only (MOD, - 28.7%; HIGH, + 202.9%; LV-HIIT, - 22.7%; p < .05). TRX-R and NF-κB p65 activity increased during exercise in all trials, with the greatest response in TRX-R activity seen in HIGH (p < 0.05). Discussion. All trials stimulated a transient increase in TRX-1 protein expression during exercise. Only HIGH induced a transient over-oxidation of PRDX, alongside the greatest change in TRX-R activity. Future studies are needed to clarify the significance of heightened peroxide exposure during continuous high-intensity exercise and the mechanisms of PRDX-regulatory control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given cybernetic idea is formed on the basis of neurophysiologic, neuropsychological, neurocybernetic data and verisimilar hypotheses, which fill gaps of formers, of the author as well. First of all attention is focused on general principles of a Memory organization in the brain and processes which take part in it that realize such psychical functions as perception and identification of input information about patterns and a problem solving, which is specified by the input and output conditions, as well. Realization of the second function, essentially cogitative, is discussed in the aspects of figurative and lingual thinking on the levels of intuition and understanding. The reasons of advisability and principles of bionic approach to creation of appropriate tools of artificial intelligent are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anterior segment optical coherent tomography (AS-OCT, Visante; Zeiss) is used to examine meridional variation in anterior scleral thickness (AST) and its association with refractive error, ethnicity and gender. Scleral cross-sections of 74 individuals (28 males; 46 females; aged between 18-40 years (27.7±5.3)) were sampled twice in random order in 8 meridians: [superior (S), inferior (I), nasal (N), temporal (T), superior-temporal (ST), superior-nasal (SN), inferior-temporal (IT) and inferior-nasal (IN)]. AST was measured in 1mm anterior-toposterior increments (designated the A-P distance) from the scleral spur (SS) over a 6mm distance. Axial length and refractive error were measured with a Zeiss IOLMaster biometer and an open-view binocular Shin-Nippon autorefractor. Intra- And inter-observer variability of AST was assessed for each of the 8 meridians. Mixed repeated measures ANOVAs tested meridional and A-P distance differences in AST with refractive error, gender and ethnicity. Only right eye data were analysed. AST (mean±SD) across all meridians and A-P distances was 725±46μm. Meridian SN was the thinnest (662±57μm) and I the thickest (806 ±60μm). Significant differences were found between all meridians (p<0.001), except S:ST, IT:IN, IT:N and IN:N. Significant differences between A-P distances were found except between SS and 6 mm and between 2 and 4mm. AST measurements at 1mm (682±48 μm) were the thinnest and at 6mm (818±49 μm) the thickest (p<0.001); a significant interaction occurred between meridians and A-P distances (p<0.001). AST was significantly greater (p<0.001) in male subjects but no significant differences were found between refractive error or ethnicity. Significant variations in AST occur with regard to meridian and distance from the SS and may have utility in selecting optimum sites for pharmaceutical or surgical intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British Pakistani-heritage adults with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of gene function (knockouts) in 781 genes. We observed 13.7% fewer than expected homozygous knockout genotypes, implying an average load of 1.6 recessive-lethal-equivalent LOF variants per adult. Linking genetic data to lifelong health records, knockouts were not associated with clinical consultation or prescription rate. In this dataset we identified a healthy PRDM9 knockout mother, and performed phased genome sequencing on her, her child and controls, which showed meiotic recombination sites localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform upon essential genetic loci, and demonstrate PRDM9 redundancy in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study measures the increase in serum carotenoid concentration in 30 healthy individuals after supplementation with a low dose xanthophyll ester (3 and 6 mg of lutein equivalent/per day) when compared to a placebo. Serum levels of carotenoids were measured using HPLC and showed an increase in the concentration of lutein, zeaxanthin and four lutein metabolites proportional to dose. In order to further assess the importance of the end-group structure in carotenoids we have investigated the influence of the end-group type and functionality on the conformational energy barrier. We used the density functional method implemented on GAUSSIAN 98 to calculate the conformational energy curves for rotation of the P-ring or the E-ring relative to short polyene chains around the C6-C7 single bond. A large barrier is observed for the interconversion of conformers in the E-rings (8 kcal/mol) when compared to beta rings (2.3-3 kcal/mol).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MC is grateful to Karen Lupo and Brian Codding for the invitation to participate in the symposium honouring Jim O’Connell at the 2015 annual meeting of the Society for American Archaeology in San Francisco, and for the invitation to contribute to this special issue of the Journal of Anthropological Archaeology. We thank Conrad Brimacombe, Kate Britton, Keith Dobney, Mana Dembo, Marina Elliott, Ian Gilligan, Brian Hayden, Trenton Holliday, Vance Hutchinson, Steve Kuhn, Dana Lepofsky, Lee Lyman, Luseadra McKerracher, Kim Plomp, Bernard Wood, and an anonymous reviewer for their comments on earlier versions of this paper. Ian Gilligan’s comments in particular resulted in major changes to the interpretation of the results. MC is supported by the Social Sciences and Humanities Research Council of Canada, the Canada Research Chairs Program, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, and Simon Fraser University. LT work on the study reported here was supported by the Social Sciences and Humanities Research Council of Canada (award no. 755-2011-0406). We are grateful to all these funding bodies. Last but not least, MC would like to express his gratitude to Jim O’Connell for his friendship and guidance over nearly 20 years. Thanks Jim. You’re the dog’s bollocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) is a globally prevalent cause of diarrhea. Though usually self-limited, it can be severe and debilitating. Little is known about the host transcriptional response to infection. We report the first gene expression analysis of the human host response to experimental challenge with ETEC. METHODS: We challenged 30 healthy adults with an unattenuated ETEC strain, and collected serial blood samples shortly after inoculation and daily for 8 days. We performed gene expression analysis on whole peripheral blood RNA samples from subjects in whom severe symptoms developed (n = 6) and a subset of those who remained asymptomatic (n = 6) despite shedding. RESULTS: Compared with baseline, symptomatic subjects demonstrated significantly different expression of 406 genes highlighting increased immune response and decreased protein synthesis. Compared with asymptomatic subjects, symptomatic subjects differentially expressed 254 genes primarily associated with immune response. This comparison also revealed 29 genes differentially expressed between groups at baseline, suggesting innate resilience to infection. Drug repositioning analysis identified several drug classes with potential utility in augmenting immune response or mitigating symptoms. CONCLUSIONS: There are statistically significant and biologically plausible differences in host gene expression induced by ETEC infection. Differential baseline expression of some genes may indicate resilience to infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The orexigenic gut hormone ghrelin and its receptor are present in pancreatic islets. Although ghrelin reduces insulin secretion in rodents, its effect on insulin secretion in humans has not been established. The goal of this study was to test the hypothesis that circulating ghrelin suppresses glucose-stimulated insulin secretion in healthy subjects. RESEARCH DESIGN AND METHODS: Ghrelin (0.3, 0.9 and 1.5 nmol/kg/h) or saline was infused for more than 65 min in 12 healthy patients (8 male/4 female) on 4 separate occasions in a counterbalanced fashion. An intravenous glucose tolerance test was performed during steady state plasma ghrelin levels. The acute insulin response to intravenous glucose (AIRg) was calculated from plasma insulin concentrations between 2 and 10 min after the glucose bolus. Intravenous glucose tolerance was measured as the glucose disappearance constant (Kg) from 10 to 30 min. RESULTS: The three ghrelin infusions raised plasma total ghrelin concentrations to 4-, 15-, and 23-fold above the fasting level, respectively. Ghrelin infusion did not alter fasting plasma insulin or glucose, but compared with saline, the 0.3, 0.9, and 1.5 nmol/kg/h doses decreased AIRg (2,152 +/- 448 vs. 1,478 +/- 2,889, 1,419 +/- 275, and 1,120 +/- 174 pmol/l) and Kg (0.3 and 1.5 nmol/kg/h doses only) significantly (P < 0.05 for all). Ghrelin infusion raised plasma growth hormone and serum cortisol concentrations significantly (P < 0.001 for both), but had no effect on glucagon, epinephrine, or norepinephrine levels (P = 0.44, 0.74, and 0.48, respectively). CONCLUSIONS: This is a robust proof-of-concept study showing that exogenous ghrelin reduces glucose-stimulated insulin secretion and glucose disappearance in healthy humans. Our findings raise the possibility that endogenous ghrelin has a role in physiologic insulin secretion, and that ghrelin antagonists could improve beta-cell function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unacylated ghrelin (UAG) is the predominant ghrelin isoform in the circulation. Despite its inability to activate the classical ghrelin receptor, preclinical studies suggest that UAG may promote β-cell function. We hypothesized that UAG would oppose the effects of acylated ghrelin (AG) on insulin secretion and glucose tolerance. AG (1 µg/kg/h), UAG (4 µg/kg/h), combined AG+UAG, or saline were infused to 17 healthy subjects (9 men and 8 women) on four occasions in randomized order. Ghrelin was infused for 30 min to achieve steady-state levels and continued through a 3-h intravenous glucose tolerance test. The acute insulin response to glucose (AIRg), insulin sensitivity index (SI), disposition index (DI), and intravenous glucose tolerance (kg) were compared for each subject during the four infusions. AG infusion raised fasting glucose levels but had no effect on fasting plasma insulin. Compared with the saline control, AG and AG+UAG both decreased AIRg, but UAG alone had no effect. SI did not differ among the treatments. AG, but not UAG, reduced DI and kg and increased plasma growth hormone. UAG did not alter growth hormone, cortisol, glucagon, or free fatty acid levels. UAG selectively decreased glucose and fructose consumption compared with the other treatments. In contrast to previous reports, acute administration of UAG does not have independent effects on glucose tolerance or β-cell function and neither augments nor antagonizes the effects of AG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute "cell motility" category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the beta- and gamma-proteobacteria. Many fliC genes were deduced to be under the control of sigma(28). The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13-4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (<= 1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved metagenome assembly from short reads will be required to facilitate in silico analyses of complete complex biochemical pathways for low-abundance target species from shotgun metagenomes.