968 resultados para Dopamine Agonists


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selektiivisten estrogeenireseptorin muuntelijoiden (serm) vaikutus rintasyöpäsolujen ja luun solujen kuolemaan Selektiiviset estrogeenireseptorin muuntelijat (SERMit) ovat ryhmä kemialliselta rakenteeltaan erilaisia yhdisteitä jotka sitoutuvat solunsisäisiin estrogeenireseptoreihin toimien joko estrogeenin kaltaisina yhdisteinä tai estrogeenin vastavaikuttajina. Tamoksifeeni on SERM –yhdiste, jota on jo pitkään käytetty estrogeenireseptoreita (ER) ilmentävän rintasyövän lääkehoidossa. Tamoksifeeni sekä estää rintasyöpäsolujen jakaantumista että toisaalta aikaansaa niiden apoptoosin eli ohjelmoidun solukuoleman muuntelemalla ER-välitteisesti kohdesolun geenien ilmentymistä. Viimeaikaiset tutkimustulokset ovat kuitenkin osoittaneet tamoksifeenilla olevan myös nopeampia, nongenomisia vaikutusmekanismeja. Tässä väitöskirjatyössä tutkimme niitä nopeita vaikutusmekanismeja joiden avulla tamoksifeeni vaikuttaa rintasyöpäsolujen elinkykyyn. Osoitamme että tamoksifeeni farmakologisina pitoisuuksina aikaansaa nopean mitokondriaalisen solukuolemaan johtavan signallointireitin aktivoitumisen rintasyöpäsoluissa. Tämän lisäksi tutkimme myös tamoksifeenin aiheuttamaan mitokondriovaurioon johtavia tekijöitä. Tutkimustuloksemme osoittavat että ER-positiivisissa rintasyöpäsoluissa tamoksifeeni indusoi pitkäkestoisen ERK-kinaasiaktivaation, joka voidaan estää 17-beta-estradiolilla. Tamoksifeenin aikaansaama nopea solukuolema on pääosin ER:sta riippumaton tapahtuma, mutta siihen voidaan vaikuttaa myös ER-välitteisin mekanismein. Sen sijaan epidermaalisen kasvutekijäreseptorin (EGFR) voitiin osoittaa osallistuvan tamoksifeenin nopeiden vaikutusten välittämiseen. Tämän lisäksi vertailimme myös estradiolin ja eri SERM-yhdisteiden kykyä suojata apoptoosilta käyttämällä osteoblastiperäisiä soluja. Pytyäksemme vertailemaan ER-isotyyppien roolia eri yhdisteiden suojavaikutuksissa, transfektoimme U2OS osteosarkoomasolulinjan ilmentämään pysyvästi joko ERalfaa tai ERbetaa. Tulostemme mukaan sekä estradioli että uusi SERM-yhdiste ospemifeeni suojaavat osteoblastin kaltaisia soluja etoposidi-indusoidulta apoptoosilta. Sekä ERalfa että ERbeta pystyivät välittämään suojavaikutusta, joskin vaikutukset erosivat toisistaan. Lisäksi havaitsimme edellä mainitun suojavaikutuksen olevan yhteydessä muutoksiin solujen sytokiiniekspressiossa. Tietoa SERM-yhdisteiden anti-ja proapoptoottisten vaikutusmekanismeista eri kohdekudoksissa voidaan mahdollisesti hyödyntää kehiteltäessä uusia kudosspesifisiä SERM-yhdisteitä.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose homeostasis as well as homeostatic and hedonic control of feeding is regulated by hormonal, neuronal, and nutrient-related cues. Glucose, besides its role as a source of metabolic energy, is an important signal controlling hormone secretion and neuronal activity, hence contributing to whole-body metabolic integration in coordination with feeding control. Brain glucose sensing plays a key, but insufficiently explored, role in these metabolic and behavioral controls, which when deregulated may contribute to the development of obesity and diabetes. The recent introduction of innovative transgenic, pharmacogenetic, and optogenetic techniques allows unprecedented analysis of the complexity of central glucose sensing at the molecular, cellular, and neuronal circuit levels, which will lead to a new understanding of the pathogenesis of metabolic diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UNLABELLED: Patients carrying very rare loss-of-function mutations in interleukin-1 receptor-associated kinase 4 (IRAK4), a critical signaling mediator in Toll-like receptor signaling, are severely immunodeficient, highlighting the paramount role of IRAK kinases in innate immunity. We discovered a comparatively frequent coding variant of the enigmatic human IRAK2, L392V (rs3844283), which is found homozygously in ∼15% of Caucasians, to be associated with a reduced ability to induce interferon-alpha in primary human plasmacytoid dendritic cells in response to hepatitis C virus (HCV). Cytokine production in response to purified Toll-like receptor agonists was also impaired. Additionally, rs3844283 was epidemiologically associated with a chronic course of HCV infection in two independent HCV cohorts and emerged as an independent predictor of chronic HCV disease. Mechanistically, IRAK2 L392V showed intact binding to, but impaired ubiquitination of, tumor necrosis factor receptor-associated factor 6, a vital step in signal transduction. CONCLUSION: Our study highlights IRAK2 and its genetic variants as critical factors and potentially novel biomarkers for human antiviral innate immunity. (Hepatology 2015;62:1375-1387).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Connexin37 (Cx37) and Cx40 are crucial for endothelial cell-cell communication and homeostasis. Both connexins interact with endothelial nitric oxide synthase (eNOS). The exact contribution of these interactions to the regulation of vascular tone is unknown. RESULTS: Cx37 and Cx40 were expressed in close proximity to eNOS at cell-cell interfaces of mouse aortic endothelial cells. Absence of Cx37 did not affect expression of Cx40 and a 50 % reduction of Cx40 in Cx40(+/-) aortas did not affect the expression of Cx37. However, absence of Cx40 was associated with reduced expression of Cx37. Basal NO release and the sensitivity for ACh were decreased in Cx37(-/-) and Cx40(-/-) aortas but not in Cx40(+/-) aortas. Moreover, ACh-induced release of constricting cyclooxygenase products was present in WT, Cx40(-/-) and Cx40(+/-) aortas but not in Cx37(-/-) aortas. Finally, agonist-induced NO-dependent relaxations and the sensitivity for exogenous NO were not affected by genotype. CONCLUSIONS: Cx37 is more markedly involved in basal NO release, release of cyclooxygenase products and the regulation of the sensitivity for ACh as compared to Cx40.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temporal lobe epilepsy (TLE) is a common epilepsy syndrome with a complex etiology. Despite evidence for the participation of genetic factors, the genetic basis of TLE remains largely unknown. A role for the galanin neuropeptide in the regulation of epileptic seizures has been established in animal models more than two decades ago. However, until now there was no report of pathogenic mutations in GAL, the galanin-encoding gene, and therefore its role in human epilepsy was not established. Here, we studied a family with a pair of monozygotic twins affected by TLE and two unaffected siblings born to healthy parents. Exome sequencing revealed that both twins carried a novel de novo mutation (p.A39E) in the GAL gene. Functional analysis revealed that the p.A39E mutant showed antagonistic activity against galanin receptor 1 (GalR1)-mediated response, and decreased binding affinity and reduced agonist properties for GalR2. These findings suggest that the p.A39E mutant could impair galanin signaling in the hippocampus, leading to increased glutamatergic excitation and ultimately to TLE. In a cohort of 582 cases, we did not observe any pathogenic mutations indicating that mutations in GAL are a rare cause of TLE. The identification of a novel de novo mutation in a biologically-relevant candidate gene, coupled with functional evidence that the mutant protein disrupts galanin signaling, strongly supports GAL as the causal gene for the TLE in this family. Given the availability of galanin agonists which inhibit seizures, our findings could potentially have direct implications for the development of anti-epileptic treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β-agonists influence muscle performance during exercise/stress in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in β band) in slices of the mouse anterior cingulate cortex (ACC). We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets (PNNs) enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia (SZ) patients who display prefrontal anomalies of both the dopaminergic system and the PNNs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Striatal adenosine A2A receptors (A2ARs) are highly expressed in medium spiny neurons (MSNs) of the indirect efferent pathway, where they heteromerize with dopamine D2 receptors (D2Rs). A2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A1 receptors (A1Rs). It has been hypothesized that postsynaptic A2AR antagonists should be useful in Parkinson's disease, while presynaptic A2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261) showed no clear preference. Radioligand-binding experiments were performed in cells expressing A2AR-D2R and A1R-A2AR heteromers to determine possible differences in the affinity of these compounds for different A2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A2AR when co-expressed with D2R than with A1R. KW-6002 showed the best relative affinity for A2AR co-expressed with D2R than co-expressed with A1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile. On the basis of their preferential pre- versus postsynaptic actions, SCH-442416 and KW-6002 may be used as lead compounds to obtain more effective antidyskinetic and antiparkinsonian compounds, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Dopamine is believed to be a key neurotransmitter in the development of attention-deficit/ hyperactivity disorder (ADHD). Several recent studies point to an association of the dopamine D4 receptor (DRD4) gene and this condition. More specifically, the 7 repeat variant of a variable number of tandem repeats (VNTR) polymorphism in exon III of this gene is suggested to bear a higher risk for ADHD. In the present study, we investigated the role of this polymorphism in the modulation of neurophysiological correlates of response inhibition (Go/Nogo task) in a healthy, high-functioning sample. Results Homozygous 7 repeat carriers showed a tendency for more accurate behavior in the Go/Nogo task compared to homozygous 4 repeat carriers. Moreover, 7 repeat carriers presented an increased nogo-related theta band response together with a reduced go-related beta decrease. Conclusions These data point to improved cognitive functions and prefrontal control in the 7 repeat carriers, probably due to the D4 receptor's modulatory role in prefrontal areas. The results are discussed with respect to previous behavioral data on this polymorphism and animal studies on the impact of the D4 receptor on cognitive functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adjuvants enhance immunogenicity of vaccines through either targeted antigen delivery or stimulation of immune receptors. Three cationic nanoparticle formulations were evaluated for their potential as carriers for a DNA vaccine, and muramyl dipeptide (MDP) as immunostimulatory agent, to induce and increase immunogenicity of Mycobacterium tuberculosis antigen encoding plasmid DNA (pDNA). The formulations included (1) trimethyl chitosan (TMC) nanoparticles, (2) a squalene-in-water nanoemulsion, and (3) a mineral oil-in-water nanoemulsion. The adjuvant effect of the pDNA-nanocomplexes was evaluated by serum antibody analysis in immunized mice. All three carriers display a strong adjuvant effect, however, only TMC nanoparticles were capable to bias immune responses towards Th1. pDNA naturally contains immunostimulatory unmethylated CpG motifs that are recognized by Toll-like receptor 9 (TLR-9). In mechanistic in vitro studies, activation of TLR-9 and the ability to enhance immunogenicity by simultaneously targeting TLR-9 and NOD-like receptor 2 (NLR-2) was determined by proinflammatory cytokine release in RAW264.7 macrophages. pDNA in combination with MDP was shown to significantly increase proinflammatory cytokine release in a synergistic manner, dependent on NLR-2 activation. In summary, novel pDNA-Ag85A loaded nanoparticle formulations, which induce antigen specific immune responses in mice were developed, taking advantage of the synergistic combinations of TLR and NLR agonists to increase the adjuvanticity of the carriers used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of disabling postural and action tremor, which is repotted in less than 15 % of cases of PD. may be due to a combination of ET and PD, We report the case of a patient suffering bilaterally from postural tremor of different etiology on either side. A 69 year-old, right-handed woman with a family history of ET, was referred for bilateral hand tremor which was disabling on the right side. At the age of 61 she noticed a right hand postural tremor. not responsive to $- blockers, followed. two years later, by the onset of postural and action tremor on the opposite side. In the following two years. the patient developed asymmetric right-sided parkinsonism, while the postural and action tremor on the left remained unchanged. At time of evaluation, the patient had asymmetric parkinsonism with a 5 Hz rest and postural tremor on the right side and a postural-action tremor of the left hand. Dopaminergic acute challenge tests were performed. The administration of levodopalcarbidopa (ZOO/SO mg) improved the tremor on the right but not on the left. A progressive and more significant improvement was observed after the administration of increasing doses of apomorphine ( 1.6-3-4.5-6 mg). At the dose of 6 mg, apomorphine nearly completely abolished tremor on the right. The tremor of the left hand remained unchanged. The distinction between the two types of tremor was confirmed by the chronic treatment (using levodopa and dopaminergic agonists). Which improved only the right-sided tremor. Primidone was later introduced and improved selectively the tremor on the left. Conclusions: This patient developed both PD and ET with an unusual opposite prevalence. Drug challenge permitted the differentiation the clinically similar tremor types, which have a different pathophysiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Pregnant women with asthma need to take medication during pregnancy. OBJECTIVE: We sought to identify whether there is an increased risk of specific congenital anomalies after exposure to antiasthma medication in the first trimester of pregnancy. METHODS: We performed a population-based case-malformed control study testing signals identified in a literature review. Odds ratios (ORs) of exposure to the main groups of asthma medication were calculated for each of the 10 signal anomalies compared with registrations with nonchromosomal, nonsignal anomalies as control registrations. In addition, exploratory analyses were done for each nonsignal anomaly. The data set included 76,249 registrations of congenital anomalies from 13 EUROmediCAT registries. RESULTS: Cleft palate (OR, 1.63; 95% CI, 1.05-2.52) and gastroschisis (OR, 1.89; 95% CI, 1.12-3.20) had significantly increased odds of exposure to first-trimester use of inhaled β2-agonists compared with nonchromosomal control registrations. Odds of exposure to salbutamol were similar. Nonsignificant ORs of exposure to inhaled β2-agonists were found for spina bifida, cleft lip, anal atresia, severe congenital heart defects in general, or tetralogy of Fallot. None of the 4 literature signals of exposure to inhaled steroids were confirmed (cleft palate, cleft lip, anal atresia, and hypospadias). Exploratory analyses found an association between renal dysplasia and exposure to the combination of long-acting β2-agonists and inhaled corticosteroids (OR, 3.95; 95% CI, 1.99-7.85). CONCLUSIONS: The study confirmed increased odds of first-trimester exposure to inhaled β2-agonists for cleft palate and gastroschisis and found a potential new signal for renal dysplasia associated with combined long-acting β2-agonists and inhaled corticosteroids. Use of inhaled corticosteroids during the first trimester of pregnancy seems to be safe in relation to the risk for a range of specific major congenital anomalies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the philosophical literature, self-deception is mainly approached through the analysis of paradoxes. Yet, it is agreed that self-deception is motivated by protection from distress. In this paper, we argue, with the help of findings from cognitive neuroscience and psychology, that self-deception is a type of affective coping. First, we criticize the main solutions to the paradoxes of self-deception. We then present a new approach to self-deception. Self-deception, we argue, involves three appraisals of the distressing evidence: (a) appraisal of the strength of evidence as uncertain, (b) low coping potential and (c) negative anticipation along the lines of Damasio's somatic marker hypothesis. At the same time, desire impacts the treatment of flattering evidence via dopamine. Our main proposal is that self-deception involves emotional mechanisms provoking a preference for immediate reward despite possible long-term negative repercussions. In the last part, we use this emotional model to revisit the philosophical paradoxes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STUDY OBJECTIVES: The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. METHODS: EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. RESULTS: Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. CONCLUSIONS: Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context.