901 resultados para Discrete Time Domain
Resumo:
Dada a necessidade de obtermos sistemas monitorizados com elevada precisão, de grande durabilidade e resistentes às condições atmosféricas, surgiu a possibilidade de aplicação das fibras ópticas como sensores para monitorização de pressão. Nesse contexto, as fibras “hetero-core” (fibra óptica composta por uma fibra multimodo entre duas fibras ópticas monomodo) e a utilização de lentes GRIN (“GRaded INdex”) em conjunto com superfícies reflectoras permitem a determinação da pressão e são objecto de estudo desta dissertação. Em termos de aplicação, o objectivo principal desta tese de mestrado foi de proporcionar o projecto e desenvolvimentos da medida de pressão em 48 pontos para um tanque de estudo dos fenómenos de percolação da água nos solos e que é pertencente à Secção de Geotecnia do Departamento de Engenharia Civil da Faculdade de Engenharia da Universidade do Porto. Inicialmente, foi caracterizado um sistema contendo uma fibra “hetero-core” à qual foi aplicada uma curvatura, com auxílio de uma carruagem micrométrica. Este sistema permitiu a simulação do mesmo efeito de aplicação de pressão à fibra “hetero-core”. Na configuração seguinte, usou-se um OTDR (“Optical Time Domain Reflectometer”) para visualização e registo das perdas encontradas durante o processo de dobrar e esticar da fibra “hetero-core”. Ao longo deste registo, várias configurações foram testadas até ser encontrada a cabeça sensora com melhor comportamento para monitorizar a pressão. A multiplexagem foi conseguida ao colocar dois sensores em série, sendo cada um deles constituído por uma fibra “hetero-core” colocada no fundo de um tubo de água disposto verticalmente. Com a adição da água no tubo de água, a curvatura na fibra “hetero-core” aumentava, notando-se claramente que as perdas também subiam. Os resultados obtidos nesta configuração foram bastante satisfatórios permitindo a independência entre os dois sensores dispostos em série. Posteriormente, foi testada uma nova configuração sensora, o sensor de fibra óptica para monitorização de pressão foi construído com recurso a uma lente GRIN e uma superfície reflectora. Esta lente, disposta diante de um espelho, permitiu emitir e captar luz de um determinado comprimento de onda devido à reflexão do sinal luminoso no espelho. Com sucessivos incrementos, afastou-se e aproximou-se a lente ao espelho, registando-se e observando-se as perdas de potência obtidas com auxílio do OTDR. Também para esta configuração foi testada a multiplexagem de vários sensores, tendo sido utilizadas as seguintes opções: um acoplador de 2:1; um acoplador 4:1 e um comutador óptico. Verificou-se que a utilização de um comutador óptico é o melhor caso para a monitorização de pressão de múltiplos sensores. A multiplexagem com recurso ao comutador foi possível, uma vez que permitia a medição independente de cada sensor de pressão num determinado tempo. Com este resultado, é possível monitorizar 48 sensores com recurso ao OTDR, multiplexados temporalmente. Toda esta implementação prática da dissertação foi realizada nas instalações da Unidade de Optoelectrónica e Sistemas Electrónicos no INESC Porto, onde foram caracterizados e estudados sensores com diferentes características que poderão ser lidas neste documento. A componente teórica foi efectuada na Universidade da Madeira.
Resumo:
As condições de ambiente térmico e aéreo, no interior de instalações para animais, alteram-se durante o dia, devido à influência do ambiente externo. Para que análises estatísticas e geoestatísticas sejam representativas, uma grande quantidade de pontos distribuídos espacialmente na área da instalação deve ser monitorada. Este trabalho propõe que a variação no tempo das variáveis ambientais de interesse para a produção animal, monitoradas no interior de instalações para animais, pode ser modelada com precisão a partir de registros discretos no tempo. O objetivo deste trabalho foi desenvolver um método numérico para corrigir as variações temporais dessas variáveis ambientais, transformando os dados para que tais observações independam do tempo gasto durante a aferição. O método proposto aproximou os valores registrados com retardos de tempo aos esperados no exato momento de interesse, caso os dados fossem medidos simultaneamente neste momento em todos os pontos distribuídos espacialmente. O modelo de correção numérica para variáveis ambientais foi validado para o parâmetro ambiental temperatura do ar, sendo que os valores corrigidos pelo método não diferiram pelo teste Tukey, a 5% de probabilidade dos valores reais registrados por meio de dataloggers.
Resumo:
The increased availability of soil water is important for the management of non-irrigated orange orchards. The objective of this study was to evaluate the availability of soil water in a Haplorthox (Rhodic Ferralsol) under different tillage systems used for orchard plantation, mulch management and rootstocks in a "Pera" orange orchard in northwest Parana, Brazil. An experiment in a split-split-plot design was established in 2002, in an area cultivated with Brachiaria brizantha grass in which three tillage systems (no tillage, conventional tillage and strip-tillage) were used for orchard plantation. This grass was mowed twice a year between the rows, representing two mulch managements in the split plots (no mulching and mulching in the plant rows). The split-split-plots were represented by two rootstocks ("Rangpur" lime and "Cleopatra" mandarin). The soil water content in the plant rows was evaluated in the 0-20 cm layer in 2007 and at 0-20 and 20-40 cm in 2008-2009. The effect of soil tillage systems prior to implantation of orange orchards on soil water availability was less pronounced than mulching and the rootstocks. The soil water availability was lower when "Pera" orange trees were grafted on "Cleopatra" mandarin than on "Rangpur" lime rootstocks. Mulching had a positive influence on soil water availability in the sandy surface layer (020 cm) and sandy clay loam subsurface (20-40 cm) of the soil in the spring. The production of B. brizantha between the rows and residue disposal in the plant rows as mulch increased water availability to the "Pera" orange trees.
Resumo:
The search for ever smaller device and without loss of performance has been increasingly investigated by researchers involving applied electromagnetics. Antennas using ceramics materials with a high dielectric constant, whether acting as a substract element of patch radiating or as the radiant element are in evidence in current research, that due to the numerous advantages offered, such as: low profile, ability to reduce the its dimensions when compared to other devices, high efficiency of ratiation, suitability the microwave range and/or millimeter wave, low temperature coefficient and low cost. The reason for this high efficiency is that the dielectric losses of ceramics are very low when compared to commercially materials sold used in printed circuit boards, such as fiberglass and phenolite. These characteristics make ceramic devices suitable for operation in the microwave band. Combining the design of patch antennas and/or dielectric resonator antenna (DRA) to certain materials and the method of synthesis of these powders in the manufacture of devices, it s possible choose a material with a dielectric constant appropriate for the design of an antenna with the desired size. The main aim of this work is the design of patch antennas and DRA antennas on synthesis of ceramic powders (synthesis by combustion and polymeric precursors - Pe- chini method) nanostructured with applications in the microwave band. The conventional method of mix oxides was also used to obtain nanometric powders for the preparation of tablets and dielectric resonators. The devices manufactured and studied on high dielectric constant materials make them good candidates to have their small size compared to other devices operating at the same frequency band. The structures analyzed are excited by three different techniques: i) microstrip line, ii) aperture coupling and iii) inductive coupling. The efficiency of these techniques have been investigated experimentally and compared with simulations by Ansoft HFSS, used in the accurate analysis of the electromagnetic behavior of antennas over the finite element method (FEM). In this thesis a literature study on the theory of microstrip antennas and DRA antenna is performed. The same study is performed about the materials and methods of synthesis of ceramic powders, which are used in the manufacture of tablets and dielectric cylinders that make up the devices investigated. The dielectric media which were used to support the analysis of the DRA and/or patch antennas are analyzed using accurate simulations using the finite difference time domain (FDTD) based on the relative electrical permittivity (er) and loss tangent of these means (tand). This work also presents a study on artificial neural networks, showing the network architecture used and their characteristics, as well as the training algorithms that were used in training and modeling some parameters associated with the devices investigated
Resumo:
The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm
Resumo:
This work presents a theoretical and numerical analysis of structures using frequency selective surfaces applied on patch antennas. The FDTD method is used to determine the time domain reflected fields. Applications of frequency selective surfaces and patch antennas cover a wide area of telecommunications, especially mobile communications, filters and WB antennas. scattering parameters are obteained from Fourier Transformer of transmited and reflected fields in time domain. The PML are used as absorbing boundary condition, allowing the determination of the fields with a small interference of reflections from discretized limit space. Rectangular patches are considered on dielectric layer and fed by microstrip line. Frequency selective surfaces with periodic and quasi-periodic structures are analyzed on both sides of antenna. A literature review of the use of frequency selective surfaces in patch antennas are also performed. Numerical results are also compared with measured results for return loss of analyzed structures. It is also presented suggestions of continuity to this work
Resumo:
This work shows a theoretical analysis together with numerical and experimental results of transmission characteristics from the microstrip bandpass filters with different geometries. These filters are built over isotropic dielectric substrates. The numerical analysis is made by specifical commercial softwares, like Ansoft Designer and Agilent Advanced Design System (ADS). In addition to these tools, a Matlab Script was built to analyze the filters through the Finite-Difference Time-Domain (FDTD) method. The filters project focused the development of the first stage of filtering in the ITASAT s Transponder receptor, and its integration with the others systems. Some microstrip filters architectures have been studied, aiming the viability of implementation and suitable practical application for the purposes of the ITASAT Project due to its lowspace occupation in the lower UHF frequencies. The ITASAT project is a Universityexperimental project which will build a satellite to integrate the Brazilian Data Collect System s satellite constellation, with efforts of many Brazilian institutes, like for example AEB (Brazilian Spatial Agency), ITA (Technological Institute of Aeronautics), INPE/CRN (National Institute of Spatial Researches/Northeastern Regional Center) and UFRN (Federal University of Rio Grande do Norte). Comparisons were made between numerical and experimental results of all filters, where good agreements could be noticed, reaching the most of the objectives. Also, post-work improvements were suggested.
Resumo:
A method of determining spectral parameters p (slope of the phase PSD) and T (phase PSD at 1 Hz) and hence tracking error variance in a GPS receiver PLL from just amplitude and phase scintillation indices and an estimated value of the Fresnel frequency has been previously presented. Here this method is validated using 50 Hz GPS phase and amplitude data from high latitude receivers in northern Norway and Svalbard. This has been done both using (1) a Fresnel frequency estimated using the amplitude PSD (in order to check the accuracy of the method) and (2) a constant assumed value of Fresnel frequency for the data set, convenient for the situation when contemporaneous phase PSDs are not available. Both of the spectral parameters (p, T) calculated using this method are in quite good agreement with those obtained by direct measurements of the phase spectrum as are tracking jitter variances determined for GPS receiver PLLs using these values. For the Svalbard data set, a significant difference in the scintillation level observed on the paths from different satellites received simultaneously was noted. Then, it is shown that the accuracy of relative GPS positioning can be improved by use of the tracking jitter variance in weighting the measurements from each satellite used in the positioning estimation. This has significant advantages for scintillation mitigation, particularly since the method can be accomplished utilizing only time domain measurements thus obviating the need for the phase PSDs in order to extract the spectral parameters required for tracking jitter determination.
Resumo:
Este estudo visou à obtenção das curvas de calibração de um equipamento de TDR (Time Domain Reflectometry) em cinco solos da região de Piracicaba, SP, e testou a adequação da calibração interna do equipamento e das curvas genéricas de calibração. As curvas ajustadas, em cada solo separadamente, apresentaram coeficientes de determinação (R²) da ordem de 0,99, e a curva ajustada para o conjunto de dados dos cinco solos apresentou R² = 0,976. A análise de erros-padrão de estimativa mostrou que as curvas genéricas não se prestam às aplicações mais sensíveis, tais como na determinação absoluta do conteúdo de água do solo. Os testes de comparação entre as curvas ajustadas, a curva genérica e a curva embutida no equipamento mostraram que a primeira é superior às demais. O estudo mostrou, também, que a curva de calibração embutida no equipamento é inadequada para as determinações de umidade nos cinco solos estudados.
Stochastic stability for Markovian jump linear systems associated with a finite number of jump times
Resumo:
This paper deals with a stochastic stability concept for discrete-time Markovian jump linear systems. The random jump parameter is associated to changes between the system operation modes due to failures or repairs, which can be well described by an underlying finite-state Markov chain. In the model studied, a fixed number of failures or repairs is allowed, after which, the system is brought to a halt for maintenance or for replacement. The usual concepts of stochastic stability are related to pure infinite horizon problems, and are not appropriate in this scenario. A new stability concept is introduced, named stochastic tau-stability that is tailored to the present setting. Necessary and sufficient conditions to ensure the stochastic tau-stability are provided, and the almost sure stability concept associated with this class of processes is also addressed. The paper also develops equivalences among second order concepts that parallels the results for infinite horizon problems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The capacitor-commutated converter (CCC) has frequently been used in the conception of HVDC systems connected to busbars with low short circuit level. This alternative arrangement, in substitution to the conventional ones, guarantees less sensitive operational conditions to problems related with the commutation failure in the inverters besides supplying part of the reactive energy to be compensated. Studies related with its performance in steady and transient states have been presented in several works, however its behavior as harmonic source is still little explored. This work presents preliminary studies focusing the generation of characteristic harmonics by this type of converter. Subjects related with the amplification of the harmonic magnitudes are investigated and compared considering similar arrangements of conventional static converters (LCC) and CCC schemes. It is also analyzed the harmonic generation on the dc side of the installation and its influence on the ac side harmonics. The results are obtained from simulations in the time domain in PSpice environment and they clearly illustrate the operational differences between the L CC and the CCC schemes with regard to characteristic harmonic generation.
Resumo:
Relaxed conditions for stability of nonlinear, continuous and discrete-time systems given by fuzzy models are presented. A theoretical analysis shows that the proposed methods provide better or at least the same results of the methods presented in the literature. Numerical results exemplify this fact. These results are also used for fuzzy regulators and observers designs. The nonlinear systems are represented by fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers are described by linear matrix inequalities, that can be solved efficiently using convex programming techniques. The specification of the decay rate, constrains on control input and output are also discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a hybrid way mixing time and frequency domain for transmission lines modelling. The proposed methodology handles steady fundamental signal mixed with fast and slow transients, including impulsive and oscillatory behaviour. A transmission line model is developed based on lumped elements representation and state-space techniques. The proposed methodology represents an easy and practical procedure to model a three-phase transmission line directly in time domain, without the explicit use of inverse transforms. The proposed methodology takes into account the frequency-dependent parameters of the line, considering the soil and skin effects. In order to include this effect in the state matrices, a fitting method is applied. Furthermore the accuracy of proposed the developed model is verified, in frequency domain, by a simple methodology based on line distributed parameters and transfer function related to the input/output signals of the lumped parameters representation. In addition, this article proposes the use of a fast and robust analytic integration procedure to solve the state equations, enabling transient and steady-state simulations. The results are compared with those obtained by the commercial software Microtran (EMTP), taking into account a three-phase transmission line, typical in the Brazilian transmission system.