931 resultados para Discrete Time Domain


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work concerns a refinement of a suboptimal dual controller for discrete time systems with stochastic parameters. The dual property means that the control signal is chosen so that estimation of the model parameters and regulation of the output signals are optimally balanced. The control signal is computed in such a way so as to minimize the variance of output around a reference value one step further, with the addition of terms in the loss function. The idea is add simple terms depending on the covariance matrix of the parameter estimates two steps ahead. An algorithm is used for the adaptive adjustment of the adjustable parameter lambda, for each step of the way. The actual performance of the proposed controller is evaluated through a Monte Carlo simulations method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, the first-order radar cross section (RCS) of an iceberg is derived and simulated. This analysis takes place in the context of a monostatic high frequency surface wave radar with a vertical dipole source that is driven by a pulsed waveform. The starting point of this work is a general electric field equation derived previ- ously for an arbitrarily shaped iceberg region surrounded by an ocean surface. The condition of monostatic backscatter is applied to this general field equation and the resulting expression is inverse Fourier transformed. In the time domain the excitation current of the transmit antenna is specified to be a pulsed sinusoid signal. The result- ing electric field equation is simplified and its physical significance is assessed. The field equation is then further simplified by restricting the iceberg's size to fit within a single radar patch width. The power received by the radar is calculated using this electric field equation. Comparing the received power with the radar range equation gives a general expression for the iceberg RCS. The iceberg RCS equation is found to depend on several parameters including the geometry of the iceberg, the radar frequency, and the electrical parameters of both the iceberg and the ocean surface. The RCS is rewritten in a form suitable for simulations and simulations are carried out for rectangularly shaped icebergs. Simulation results are discussed and are found to be consistent with existing research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L'RCMT (Regional Centroid Moment Tensor), realizzato e gestito dai ricercatori dell'INGV (Istituto Nazionale di Geofisica e Vulcanologia), è dal 1997 il catalogo di riferimento per gli eventi sismici avvenuti nell'area Europea-Mediterranea, ossia nella regione avente longitudine compresa tra 10° W e 40° E e latitudine compresa tra 25° N e 60° N. Tale regione è caratterizzata da un'attività tettonica complessa, legata non soltanto alla convergenza delle placche Euroasiatica ed Africana, ma anche al movimento di altre placche minori (ad esempio, la placca Arabica), che tutte insieme danno origine ad una vasta gamma di regimi tettonici. Col termine RCMT si indica un particolare tipo di tensore momento sismico, la cui determinazione avviene su scala regionale, per eventi sismici aventi M_w >= 4.5 (M_w >= 4.0 per gli eventi che avvengono nella penisola italica). Il tensore momento sismico è uno strumento fondamentale per caratterizzare natura ed entità di un terremoto. Da esso, infatti, oltre alla magnitudo momento M_w, si ricava anche il meccanismo focale. Comunemente rappresentato sotto forma di beach ball, consente di individuare il tipo di movimento (distensivo, compressivo o trascorrente, o anche una combinazione del primo o del secondo con il terzo) avvenuto sulla faglia che ha provocato il terremoto. I tensori momento sismico permettono, quindi, di identificare le faglie che si attivano durante una sequenza sismica, di comprendere la loro cinematica e di ipotizzare la successiva evoluzione a breve termine. Scopo di questa relazione di laurea è stato derivare le relazioni che intercorrono fra le M_w dell'RCMT e le M_w del CMT (Centroid Moment Tensor della Columbia University), del GFZ (Deutsches GeoForschungsZentrum di Postdam) e del TDMT (Time Domain Moment Tensor). Le relazioni sono state ottenute applicando il metodo dei minimi quadrati agli eventi comuni, che sono stati selezionati utilizzando alcuni semplici programmi scritti in Fortran.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human development requires a broad balance between ecological, social and economic factors in order to ensure its own sustainability. In this sense, the search for new sources of energy generation, with low deployment and operation costs, which cause the least possible impact to the environment, has been the focus of attention of all society segments. To do so, the reduction in exploration of fossil fuels and the encouragement of using renewable energy resources for distributed generation have proved interesting alternatives to the expansion of the energy matrix of various countries in the world. In this sense, the wind energy has acquired an increasingly significant role, presenting increasing rates of power grid penetration and highlighting technological innovations such as the use of permanent magnet synchronous generators (PMSG). In Brazil, this fact has also been noted and, as a result, the impact of the inclusion of this source in the distribution and sub-transmission power grid has been a major concern of utilities and agents connected to Brazilian electrical sector. Thus, it is relevant the development of appropriate computational tools that allow detailed predictive studies about the dynamic behavior of wind farms, either operating with isolated load, either connected to the main grid, taking also into account the implementation of control strategies for active/reactive power generation and the keeping of adequate levels of voltage and frequency. This work fits in this context since it comprises mathematical and computational developments of a complete wind energy conversion system (WECS) endowed with PMSG using time domain techniques of Alternative Transients Program (ATP), which prides itself a recognized reputation by scientific and academic communities as well as by electricity professionals in Brazil and elsewhere. The modeling procedures performed allowed the elaboration of blocks representing each of the elements of a real WECS, comprising the primary source (the wind), the wind turbine, the PMSG, the frequency converter, the step up transformer, the load composition and the power grid equivalent. Special attention is also given to the implementation of wind turbine control techniques, mainly the pitch control responsible for keeping the generator under the maximum power operation point, and the vector theory that aims at adjusting the active/reactive power flow between the wind turbine and the power grid. Several simulations are performed to investigate the dynamic behavior of the wind farm when subjected to different operating conditions and/or on the occurrence of wind intensity variations. The results have shown the effectiveness of both mathematical and computational modeling developed for the wind turbine and the associated controls.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze the physical-chemical surface properties of single-slit, single-groove subwavelength-structured silver films with high-resolution transmission electron microscopy and calculate exact solutions to Maxwell’s equations corresponding to recent far-field interferometry experiments using these structures. Contrary to a recent suggestion the surface analysis shows that the silver films are free of detectable contaminants. The finite-difference time-domain calculations, in excellent agreement with experiment, show a rapid fringe amplitude decrease in the near zone (slit-groove distance out to 3–4 wavelengths). Extrapolation to slit-groove distances beyond the near zone shows that the surface wave evolves to the expected bound surface plasmon polariton (SPP). Fourier analysis of these results indicates the presence of a distribution of transient, evanescent modes around the SPP that dephase and dissipate as the surface wave evolves from the near to the far zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this dissertation, we develop a novel methodology for characterizing and simulating nonstationary, full-field, stochastic turbulent wind fields.

In this new method, nonstationarity is characterized and modeled via temporal coherence, which is quantified in the discrete frequency domain by probability distributions of the differences in phase between adjacent Fourier components.

The empirical distributions of the phase differences can also be extracted from measured data, and the resulting temporal coherence parameters can quantify the occurrence of nonstationarity in empirical wind data.

This dissertation (1) implements temporal coherence in a desktop turbulence simulator, (2) calibrates empirical temporal coherence models for four wind datasets, and (3) quantifies the increase in lifetime wind turbine loads caused by temporal coherence.

The four wind datasets were intentionally chosen from locations around the world so that they had significantly different ambient atmospheric conditions.

The prevalence of temporal coherence and its relationship to other standard wind parameters was modeled through empirical joint distributions (EJDs), which involved fitting marginal distributions and calculating correlations.

EJDs have the added benefit of being able to generate samples of wind parameters that reflect the characteristics of a particular site.

Lastly, to characterize the effect of temporal coherence on design loads, we created four models in the open-source wind turbine simulator FAST based on the \windpact turbines, fit response surfaces to them, and used the response surfaces to calculate lifetime turbine responses to wind fields simulated with and without temporal coherence.

The training data for the response surfaces was generated from exhaustive FAST simulations that were run on the high-performance computing (HPC) facilities at the National Renewable Energy Laboratory.

This process was repeated for wind field parameters drawn from the empirical distributions and for wind samples drawn using the recommended procedure in the wind turbine design standard \iec.

The effect of temporal coherence was calculated as a percent increase in the lifetime load over the base value with no temporal coherence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is an investigation on the development of a numerical assessment method for the hydrodynamic performance of an oscillating water column (OWC) wave energy converter. In the research work, a systematic study has been carried out on how the hydrodynamic problem can be solved and represented reliably, focusing on the phenomena of the interactions of the wave-structure and the wave-internal water surface. These phenomena are extensively examined numerically to show how the hydrodynamic parameters can be reliably obtained and used for the OWC performance assessment. In studying the dynamic system, a two-body system is used for the OWC wave energy converter. The first body is the device itself, and the second body is an imaginary “piston,” which replaces part of the water at the internal water surface in the water column. One advantage of the two-body system for an OWC wave energy converter is its physical representations, and therefore, the relevant mathematical expressions and the numerical simulation can be straightforward. That is, the main hydrodynamic parameters can be assessed using the boundary element method of the potential flow in frequency domain, and the relevant parameters are transformed directly from frequency domain to time domain for the two-body system. However, as it is shown in the research, an appropriate representation of the “imaginary” piston is very important, especially when the relevant parameters have to be transformed from frequency-domain to time domain for a further analysis. The examples given in the research have shown that the correct parameters transformed from frequency domain to time domain can be a vital factor for a successful numerical simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work deals with the numerical studies on hydrodynamics of oscillating water column (OWC) wave energy converters and its damping optimization on maximizing wave energy conversion by the OWC device. As a fundamental step, the hydrodynamic problems have been systematically studied by considering the interactions of the wave-structure and of the wave-internal water surface. Our first attention is on how the hydrodynamic performance can be reliably assessed, especially when it comes to the time-domain analysis, and what the physics behind the considerations is. Further on, a damping optimization for the OWC wave energy converter is also present based on the dynamics of the linear system, and a study on how we can optimize the damping for the given sea states so that the power conversion from irregular waves from irregular waves can be maximized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a study on the numerical simulation of the primary wave energy conversion in the oscillating water column (OWC) wave energy converters (WECs). The new proposed numerical approach consists of three major components: potential flow analysis for the conventional hydrodynamic parameters, such as added mass, damping coefficients, restoring force coefficients and wave excitations; the thermodynamic analysis of the air in the air chamber, which is under the assumptions of the given power take-off characteristics and an isentropic process of air flow. In the formulation, the air compressibility and its effects have been included; and a time-domain analysis by combining the linear potential flow and the thermodynamics of the air flow in the chamber, in which the hydrodynamics and thermodynamics/aerodynamics have been coupled together by the force generated by the pressurised and de-pressurised air in the air chamber, which in turn has effects on the motions of the structure and the internal water surface. As an example, the new developed approach has been applied to a fixed OWC device. The comparisons of the measured data and the simulation results show the new method is very capable of predicting the performance of the OWC devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an investigation on air compressibility in the air chamber and its effects on the power conversion of oscillating water column (OWC) devices. As it is well known that for practical OWC plants, their air chambers may be large enough for accommodating significant air compressibility, the “spring effect,” an effect that is frequently and simply regarded to store and release energy during the reciprocating process of a wave cycle. Its insight effects on the device’s performance and power conversion, however, have not been studied in detail. This research will investigate the phenomena with a special focus on the effects of air compressibility on wave energy conversion. Air compressibility itself is a complicated nonlinear process in nature, but it can be linearised for numerical simulations under certain assumptions for frequency domain analysis. In this research work, air compressibility in the OWC devices is first linearised and further coupled with the hydrodynamics of the OWC. It is able to show mathematically that in frequency-domain, air compressibility can increase the spring coefficients of both the water body motion and the device motion (if it is a floating device), and enhance the coupling effects between the water body and the structure. Corresponding to these changes, the OWC performance, the capture power, and the optimised Power Take-off (PTO) damping coefficient in the wave energy conversion can be all modified due to air compressibility. To validate the frequency-domain results and understand the problems better, the more accurate time-domain simulations with fewer assumptions have been used for comparison. It is shown that air compressibility may significantly change the dynamic responses and the capacity of converting wave energy of the OWC devices if the air chamber is very large.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For water depths greater than 60m floating wind turbines will become the most economical option for generating offshore wind energy. Tension mooring stabilised units are one type of platform being considered by the offshore wind energy industry. The complex mooring arrangement used by this type of platform means that the dynamics are greatly effected by offsets in the positioning of the anchors. This paper examines the issue of tendon anchor position tolerances. The dynamic effects of three positional tolerances are analysed in survival state using the time domain FASTLink. The severe impact of worst case anchor positional offsets on platform and turbine survivability is shown. The worst anchor misposition combinations are highlighted and should be strongly avoided. Novel methods to mitigate this issue are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microstructure manipulation is a fundamental process to the study of biology and medicine, as well as to advance micro- and nano-system applications. Manipulation of microstructures has been achieved through various microgripper devices developed recently, which lead to advances in micromachine assembly, and single cell manipulation, among others. Only two kinds of integrated feedback have been demonstrated so far, force sensing and optical binary feedback. As a result, the physical, mechanical, optical, and chemical information about the microstructure under study must be extracted from macroscopic instrumentation, such as confocal fluorescence microscopy and Raman spectroscopy. In this research work, novel Micro-Opto-Electro-Mechanical-System (MOEMS) microgrippers are presented. These devices utilize flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection, or fluorescence. The microgrippers require external actuation which was accomplished by two methods: initially with a micrometer screw, and later with a piezoelectric actuator. Thanks to a novel actuation mechanism, the “fishbone”, the gripping facets remain parallel within 1 degree. The design, simulation, fabrication, and characterization are systematically presented. The devices mechanical operation was verified by means of 3D finite element analysis simulations. Also, the optical performance and losses were simulated by the 3D-to-2D effective index (finite difference time domain FDTD) method as well as 3D Beam Propagation Method (3D-BPM). The microgrippers were designed to manipulate structures from submicron dimensions up to approximately 100 µm. The devices were implemented in SU-8 due to its suitable optical and mechanical properties. This work demonstrates two practical applications: the manipulation of single SKOV-3 human ovarian carcinoma cells, and the detection and identification of microparts tagged with a fluorescent “barcode” implemented with quantum dots. The novel devices presented open up new possibilities in the field of micromanipulation at the microscale, scalable to the nano-domain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Barrow, the northernmost point in Alaska, is one of the most intensively studied areas in the Arctic. However, paleoenvironmental evidence is limited for northern Alaska for the Lateglacial-Holocene transition. For a regional paleoenvironmental reconstruction, we investigated a permafrost ice-wedge tunnel near Barrow, Alaska. The studied site was first excavated in the early 1960s and intercepts a buried ice-wedge system at 3-6 m depth below the surface. A multi-methodological approach was applied to this buried ice-wedge system and the enclosing sediments, which in their combination, give new insight into the Late Quaternary environmental and climate history. Results of geochronological, sedimentological, cryolithological, paleoecological, isotope geochemical and microbiological studies reflect different stages of mid to late Wisconsin (MW to LW), Allerod (AD), Younger Dryas (YD), Preboreal (PB), and Late Holocene paleoenvironmental evolution. The LW age of the site is indicated by AMS dates in the surrounding sediments of 21.7 kyr BP at the lateral contact of the ice-wedge system as well as 39.5 kyr BP below the ice-wedge system. It is only recently that in this region, stable isotope techniques have been employed, i.e. to characterize different types of ground ice. The stable isotope record (oxygen: d18O; hydrogen: dD) of two intersecting ice wedges suggests different phases of the northern Alaskan climate history from AD to PB, with radiocarbon dates from 12.4 to 9.9 kyr BP (ranging from 14.8 to 10.6 kyr cal BP). Stable isotope geochemistry of ice wedges reveals winter temperature variations of the Lateglacial-Holocene transition including a prominent YD cold period, clearly separated from the warmer AD and PB phases. YD is only weakly developed in summer temperature indicators (such as pollen) for the northern Alaska area, and by consequence, the YD cold stadial was here especially related to the winter season. This highlights that the combination of winter and summer indicators comprehensively describes the seasonality of climate-relevant processes in discrete time intervals. The stable isotope record for the Barrow buried ice-wedge system documents for the first time winter climate change at the Lateglacial-Holocene transition continuously and at relatively high (likely centennial) resolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The real-time optimization of large-scale systems is a difficult problem due to the need for complex models involving uncertain parameters and the high computational cost of solving such problems by a decentralized approach. Extremum-seeking control (ESC) is a model-free real-time optimization technique which can estimate unknown parameters and can optimize nonlinear time-varying systems using only a measurement of the cost function to be minimized. In this thesis, we develop a distributed version of extremum-seeking control which allows large-scale systems to be optimized without models and with minimal computing power. First, we develop a continuous-time distributed extremum-seeking controller. It has three main components: consensus, parameter estimation, and optimization. The consensus provides each local controller with an estimate of the cost to be minimized, allowing them to coordinate their actions. Using this cost estimate, parameters for a local input-output model are estimated, and the cost is minimized by following a gradient descent based on the estimate of the gradient. Next, a similar distributed extremum-seeking controller is developed in discrete-time. Finally, we consider an interesting application of distributed ESC: formation control of high-altitude balloons for high-speed wireless internet. These balloons must be steered into a favourable formation where they are spread out over the Earth and provide coverage to the entire planet. Distributed ESC is applied to this problem, and is shown to be effective for a system of 1200 ballons subjected to realistic wind currents. The approach does not require a wind model and uses a cost function based on a Voronoi partition of the sphere. Distributed ESC is able to steer balloons from a few initial launch sites into a formation which provides coverage to the entire Earth and can maintain a similar formation as the balloons move with the wind around the Earth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Impactive contact between a vibrating string and a barrier is a strongly nonlinear phenomenon that presents several challenges in the design of numerical models for simulation and sound synthesis of musical string instruments. These are addressed here by applying Hamiltonian methods to incorporate distributed contact forces into a modal framework for discrete-time simulation of the dynamics of a stiff, damped string. The resulting algorithms have spectral accuracy, are unconditionally stable, and require solving a multivariate nonlinear equation that is guaranteed to have a unique solution. Exemplifying results are presented and discussed in terms of accuracy, convergence, and spurious high-frequency oscillations.