948 resultados para Direct Numerical Simulation (Dns)
Resumo:
This work illustrates a soil-tunnel-structure interaction study performed by an integrated,geotechnical and structural,approach based on 3D finite element analyses and validated against experimental observations.The study aims at analysing the response of reinforced concrete framed buildings on discrete foundations in interaction with metro lines.It refers to the case of the twin tunnels of the Milan (Italy) metro line 5,recently built in coarse grained materials using EPB machines,for which subsidence measurements collected along ground and building sections during tunnelling were available.Settlements measured under freefield conditions are firstly back interpreted using Gaussian empirical predictions. Then,the in situ measurements’ analysis is extended to include the evolving response of a 9 storey reinforced concrete building while being undercrossed by the metro line.In the finite element study,the soil mechanical behaviour is described using an advanced constitutive model. This latter,when combined with a proper simulation of the excavation process, proves to realistically reproduce the subsidence profiles under free field conditions and to capture the interaction phenomena occurring between the twin tunnels during the excavation. Furthermore, when the numerical model is extended to include the building, schematised in a detailed manner, the results are in good agreement with the monitoring data for different stages of the twin tunnelling. Thus, they indirectly confirm the satisfactory performance of the adopted numerical approach which also allows a direct evaluation of the structural response as an outcome of the analysis. Further analyses are also carried out modelling the building with different levels of detail. The results highlight that, in this case, the simplified approach based on the equivalent plate schematisation is inadequate to capture the real tunnelling induced displacement field. The overall behaviour of the system proves to be mainly influenced by the buried portion of the building which plays an essential role in the interaction mechanism, due to its high stiffness.
Resumo:
Gaussian random field (GRF) conditional simulation is a key ingredient in many spatial statistics problems for computing Monte-Carlo estimators and quantifying uncertainties on non-linear functionals of GRFs conditional on data. Conditional simulations are known to often be computer intensive, especially when appealing to matrix decomposition approaches with a large number of simulation points. This work studies settings where conditioning observations are assimilated batch sequentially, with one point or a batch of points at each stage. Assuming that conditional simulations have been performed at a previous stage, the goal is to take advantage of already available sample paths and by-products to produce updated conditional simulations at mini- mal cost. Explicit formulae are provided, which allow updating an ensemble of sample paths conditioned on n ≥ 0 observations to an ensemble conditioned on n + q observations, for arbitrary q ≥ 1. Compared to direct approaches, the proposed formulae proveto substantially reduce computational complexity. Moreover, these formulae explicitly exhibit how the q new observations are updating the old sample paths. Detailed complexity calculations highlighting the benefits of this approach with respect to state-of-the-art algorithms are provided and are complemented by numerical experiments.
Resumo:
The objective of the current work is to present the results of several numerical simulations of pulsatile blood flow in healthy and diseased arteries and compare with clinical expectations. Different realistic and physiological aspects such as blood flow interaction with arterial walls, effect of heart movement, cardiovascular autoregulation, arterial walls' hyperelasticity and cardiovascular disorders have been incorporated in the models thanks to a direct coupling of Abaqus and STAR-CCM+. Comparisons of implicit and explicit coupling methods in cardiovascular simulations have been discussed. An in-house methodology combined with explicit FSI coupling has reduced considerably calculation time while the simulations stay realistic and reliable for clinicians
Resumo:
"June 1977."
Resumo:
Includes abstract.
Resumo:
"June 1987."
Resumo:
Genetic assignment methods use genotype likelihoods to draw inference about where individuals were or were not born, potentially allowing direct, real-time estimates of dispersal. We used simulated data sets to test the power and accuracy of Monte Carlo resampling methods in generating statistical thresholds for identifying F-0 immigrants in populations with ongoing gene flow, and hence for providing direct, real-time estimates of migration rates. The identification of accurate critical values required that resampling methods preserved the linkage disequilibrium deriving from recent generations of immigrants and reflected the sampling variance present in the data set being analysed. A novel Monte Carlo resampling method taking into account these aspects was proposed and its efficiency was evaluated. Power and error were relatively insensitive to the frequency assumed for missing alleles. Power to identify F-0 immigrants was improved by using large sample size (up to about 50 individuals) and by sampling all populations from which migrants may have originated. A combination of plotting genotype likelihoods and calculating mean genotype likelihood ratios (D-LR) appeared to be an effective way to predict whether F-0 immigrants could be identified for a particular pair of populations using a given set of markers.
Resumo:
Future optical networks will require the implementation of very high capacity (and therefore spectral efficient) technologies. Multi-carrier systems, such as Orthogonal Frequency Division Multiplexing (OFDM) and Coherent WDM (CoWDM), are promising candidates. In this paper, we present analytical, numerical, and experimental investigations of the impact of the relative phases between optical subcarriers of CoWDM systems, as well as the effect that the number of independently modulated subcarriers can have on the performance. We numerically demonstrate a five-subcarrier and three-subcarrier 10-GBd CoWDM system with direct detected amplitude shift keying (ASK) and differentially/coherently detected (D) phase shift keying (PSK). The simulation results are compared with experimental measurements of a 32-Gbit/s DPSK CoWDM system in two configurations. The first configuration was a practical 3-modulator array where all three subcarriers were independently modulated, the second configuration being a traditional 2-modulator odd/even configuration, where only odd and even subcarriers were independently modulated. Simulation and experimental results both indicate that the independent modulation implementation has a greater dependency on the relative phases between subcarriers, with a stronger penalty for the center subcarrier than the odd/even modulation scheme.
Resumo:
We investigate the problem of determining the stationary temperature field on an inclusion from given Cauchy data on an accessible exterior boundary. On this accessible part the temperature (or the heat flux) is known, and, additionally, on a portion of this exterior boundary the heat flux (or temperature) is also given. We propose a direct boundary integral approach in combination with Tikhonov regularization for the stable determination of the temperature and flux on the inclusion. To determine these quantities on the inclusion, boundary integral equations are derived using Green’s functions, and properties of these equations are shown in an L2-setting. An effective way of discretizing these boundary integral equations based on the Nystr¨om method and trigonometric approximations, is outlined. Numerical examples are included, both with exact and noisy data, showing that accurate approximations can be obtained with small computational effort, and the accuracy is increasing with the length of the portion of the boundary where the additionally data is given.
Resumo:
2000 Mathematics Subject Classification: primary: 60J80, 60J85, secondary: 62M09, 92D40
Resumo:
Hybrid simulation is a technique that combines experimental and numerical testing and has been used for the last decades in the fields of aerospace, civil and mechanical engineering. During this time, most of the research has focused on developing algorithms and the necessary technology, including but not limited to, error minimisation techniques, phase lag compensation and faster hydraulic cylinders. However, one of the main shortcomings in hybrid simulation that has pre- vented its widespread use is the size of the numerical models and the effect that higher frequencies may have on the stability and accuracy of the simulation. The first chapter in this document provides an overview of the hybrid simulation method and the different hybrid simulation schemes, and the corresponding time integration algorithms, that are more commonly used in this field. The scope of this thesis is presented in more detail in chapter 2: a substructure algorithm, the Substep Force Feedback (Subfeed), is adapted in order to fulfil the necessary requirements in terms of speed. The effects of more complex models on the Subfeed are also studied in detail, and the improvements made are validated experimentally. Chapters 3 and 4 detail the methodologies that have been used in order to accomplish the objectives mentioned in the previous lines, listing the different cases of study and detailing the hardware and software used to experimentally validate them. The third chapter contains a brief introduction to a project, the DFG Subshake, whose data have been used as a starting point for the developments that are shown later in this thesis. The results obtained are presented in chapters 5 and 6, with the first of them focusing on purely numerical simulations while the second of them is more oriented towards a more practical application including experimental real-time hybrid simulation tests with large numerical models. Following the discussion of the developments in this thesis is a list of hardware and software requirements that have to be met in order to apply the methods described in this document, and they can be found in chapter 7. The last chapter, chapter 8, of this thesis focuses on conclusions and achievements extracted from the results, namely: the adaptation of the hybrid simulation algorithm Subfeed to be used in conjunction with large numerical models, the study of the effect of high frequencies on the substructure algorithm and experimental real-time hybrid simulation tests with vibrating subsystems using large numerical models and shake tables. A brief discussion of possible future research activities can be found in the concluding chapter.
Resumo:
I Medicane sono rari cicloni che si sviluppano sul Mar Mediterraneo e presentano caratteristiche dei cicloni tropicali, come la forma a spirale delle bande di nubi, un occhio privo di venti e nubi, venti intensi nella banda che circonda l’occhio e la presenza di un nucleo caldo. Nel presente lavoro, è stata compiuta un’analisi del Medicane Numa, verificatosi nel novembre del 2017, utilizzando gli output della simulazione del modello RAMS-ISAC. L’obiettivo di questa tesi è l’identificazione e la descrizione delle caratteristiche tropicali di Numa, focalizzandosi sulla descrizione dei diversi stadi di sviluppo del ciclone. Il sistema di bassa pressione è stato identificato utilizzando la pressione sul livello del mare, mentre l’anomalia termica e il vento orizzontale hanno permesso una descrizione della struttura del Medicane e del suo nucleo caldo. Un’illustrazione della struttura a spirale delle bande di nubi e dell’occhio è stata ottenuta con il grafico dei rapporti di mescolanza delle idrometeore di nubi e pioggia. Questi parametri hanno consentito di ricavare il diametro dell’occhio, pari a 75 km, mentre il diametro del Medicane è risultato 230 km. Numa ha registrato una velocità massima del vento in superficie di 20 m/s nella banda adiacente all’occhio del ciclone. Il diagramma di Hart dello spazio delle fasi del ciclone ha confermato la natura simil-tropicale di Numa e ne ha descritto l’evoluzione, identificando la transizione da sistema a caratteri tropicali a sistema ibrido. La traiettoria nello spazio delle fasi ha consentito l’identificazione delle sottofasi dell’evoluzione di Numa, confermate dai grafici dell’evoluzione temporale dei parametri menzionati in precedenza. L’analisi ha mostrato il ruolo cruciale della presenza di una struttura organizzata nel determinare l’intensità e la durata delle caratteristiche tropicali. Tutti i parametri hanno evidenziato la simmetria della struttura durante la persistente fase matura di Numa.
Resumo:
T2Well-ECO2M is a coupled wellbore reservoir simulator still under development at Lawrence Berkeley National Laboratory (USA) with the ability to deal with a mixture of H2O-CO2-NaCl and includes the simulation of CO2 phase transition and multiphase flow. The code was originally developed for the simulation of CO2 injection into deep saline aquifers and the modelling of enhanced geothermal systems; however, the focus of this research was to modify and test T2Well-ECO2M to simulate CO2 injection into depleted gas reservoirs. To this end, the original code was properly changed in a few parts and a dedicated injection case was developed to study CO2 phase transition inside of a wellbore and the corresponding thermal effects. In the first scenario, the injection case was run applying the fully numerical approach of wellbore to formation heat exchange calculation. Results were analysed in terms of wellbore pressure and temperature vertical profiles, wellhead and bottomhole conditions, and characteristic reservoir displacement fronts. Special attention was given to the thorough analysis of bottomhole temperature as the critical parameter for hydrate formation. Besides the expected direct effect of wellbore temperature changes on reservoir conditions, the simulation results indicated also the effect of CO2 phase change in the near wellbore zone on BH pressure distribution. To test the implemented software changes, in a second scenario, the same injection case was reproduced using the improved semi-analytical time-convolution approach for wellbore to formation heat exchange calculation. The comparison of the two scenarios showed that the simulation of wellbore and reservoir parameters after one year of continuous CO2 injection are in good agreement with the computation time to solve the time-convolution semi-analytical reduced. The new updated T2Well-ECO2M version has shown to be a robust and performing wellbore-reservoir simulator that can be also used to simulate the CO2 injection into depleted gas reservoirs.
Resumo:
This work thesis focuses on the Helicon Plasma Thruster (HPT) as a candidate for generating thrust for small satellites and CubeSats. Two main topics are addressed: the development of a Global Model (GM) and a 3D self-consistent numerical tool. The GM is suitable for preliminary analysis of HPTs with noble gases such as argon, neon, krypton, and xenon, and alternative propellants such as air and iodine. A lumping methodology is developed to reduce the computational cost when modelling the excited species in the plasma chemistry. A 3D self-consistent numerical tool is also developed that can treat discharges with a generic 3D geometry and model the actual plasma-antenna coupling. The tool consists of two main modules, an EM module and a FLUID module, which run iteratively until a steady state solution is converged. A third module is available for solving the plume with a simplified semi-analytical approach, a PIC code, or directly by integration of the fluid equations. Results obtained from both the numerical tools are benchmarked against experimental measures of HPTs or Helicon reactors, obtaining very good qualitative agreement with the experimental trend for what concerns the GM, and an excellent agreement of the physical trends predicted against the measured data for the 3D numerical strategy.
Resumo:
Excessive occlusal surface wear can result in occlusal disharmony, functional and esthetic impairment. As a therapeutic approach, conventional single crowns have been proposed, but this kind of treatment is complex, highly invasive and expensive. This case report describes the clinical outcomes of an alternative minimally invasive treatment based on direct adhesive-pin retained restorations. A 64-year-old woman with severely worn dentition, eating problems related to missing teeth and generalized tooth hypersensitivity was referred for treatment. Proper treatment planning based on the diagnostic wax-up simulation was used to guide the reconstruction of maxillary anterior teeth with direct composite resin over self-threading dentin pins. As the mandibular remaining teeth were extremely worn, a tooth-supported overdenture was installed. A stabilization splint was also used to protect the restorations. This treatment was a less expensive alternative to full-mouth rehabilitation with positive esthetic and functional outcomes after 1.5 years of follow-up.