965 resultados para Diffractive optics
Resumo:
By solving numerically the full Maxwell-Bloch equations without the slowly varying envelope approximation and the rotating-wave approximation, we investigate the effects of Lorentz local field correction (LFC) on the propagation properties of few-cycle laser pulse in a dense A-type three-level atomic medium. We find that: when the area of the input pulse is larger, split of pulse occurs and the number of the sub-pulses with LFC is larger than that without LFC; at the same distance, the time interval between the first sub-pulse and the second sub-pulse in the case without LFC is longer than that with LFC, the time of pulse appearing in the case without LFC is later than that in the case with LFC, and the two phenomena are more obvious with propagation distance increasing; time evolution rules of the populations of levels vertical bar 1 >, vertical bar 2 > and vertical bar 3 > in the two cases with and without LFC are much different. When the area of the input pulse is smaller, effects of LFC on time evolutions of the pulse and populations are remarkably smaller than those in the case of larger area pulse. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
It is shown that in a closed equispaced three-level ladder system, by controlling the relative phase of two applied coherent fields, the conversion from absorption with inversion to lasing without inversion (LWI) can be realized; a large index of the refraction with zero absorption can be gotten; considerable increasing of the spectrum region and value of the LWI gain can be achieved. Our study also reveals that the incoherent pumping will produce a remarkable effect oil the phase-dependent properties of the system. Modifying value of the incoherent pumping can change the property of the system from absorption to amplification and enhance significantly LWI gain. If the incoherent pumping is absent, we cannot get any gain for any value of the relative phase. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Acceleration of an initially moving electron by a copropagation ultra-short ultra-intense laser pulse in vacuum is studied. It is shown that when appropriate laser pulse parameters and focusing conditions are imposed, the acceleration of electron by ascending front of laser pulse can be much stronger compared to the deceleration by descending part. Consequently, the electron can obtain significantly high net energy gain. We also report the results of the new scheme that enables a second-step acceleration of electron using laser pulses of peak intensity in the range of 10(19)-10(20) W mu m(2)/cm(2). In the first step the electron acceleration from rest is limited to energies of a few MeV, while in the second step the electron acceleration can be considerably enhanced to about 100 MeV energy.
Resumo:
This report contains CTD profiling results from the seventh cruise to the Marine Optics Buoy (MOBY) site near the Island of Lanai. Data presented here were obtained on the University of Hawaii Research Vessel Moana Wave between 26 and 30 June 1994. Two types of data are reported: vertical profile observations of salinity, temperature beam attenuation and chlorophyll-a fluorescence, profiles; and total suspended matter and suspended organic carbon and nitrogen taken from water samplers at those stations.
Resumo:
An approach for fabricating large area uniform nanostructures by direct femtosecond (fs) laser ablation is presented. By the simple scanning technique with appropriate irradiation conditions, arbitrary size of uniform, complanate nano-grating, nano-particle, and nano-square structures can be produced on wide bandgap materials as well as graphite. The feature sizes of the formed nanostructures, which can be tuned in a wide range by varying the irradiation wavelength, is about 200 nm with 800 nm fs laser irradiation. The physical properties of the nano-structured surfaces are changed greatly, especially the optical property, which is demonstrated by the extraordinary enhancement of light transmission of the treated area. This technique is efficient, universal, and environmentally friendly, which exhibits great potential for applications in photoelectron devices. (C) 2008 Optical Society of America
Resumo:
An acoustic-optics programmable dispersive filter (AOPDF) was first employed to actively control the linearly polarized femtosecond pump pulse frequency chirp for supercontinuum (SC) generation in a high birefringence photonic crystal fiber (PCF). By accurately controlling the second order phase distortion and polarization direction of incident pulses, the output SC spectrum can be tuned to various spectral energy distributions and bandwidths. The pump pulse energy and bandwidth are preserved in our experiment. It is found that SC with broader bandwidth can be generated with positive chirped pump pulses except when the chirp value is larger than the optimal value, and the same optimal value exists for the pump pulses polarized along the two principal axes. With optimal positive chirp, more than 78% of the pump energy can be transferred to below 750 nm. Otherwise, negative chirp will weaken the blue-shift broadening and the SC bandwidth. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The spatiotemporal evolutions of ultrashort pulses in two dimensions are investigated numerically by solving the coupled Maxwell-Bloch equations without invoking the slowly varying envelope approximation and rotating-wave approximation. For an on-axis 2n pi sech pulse, local delay makes the temporal split 2 pi sech pulses crescent-shaped in the transverse distribution. Due to the transverse effect, the temporal split 2 pi sech pulses become unstable and experience reshaping during the propagation process. Then, interference occurs between the successive crescent-shaped pulses and multiple self-focusing can form.
Resumo:
Trichromatic manipulation of Kerr nonlinearity in a three-level A atomic configuration is investigated theoretically. It is shown that for a weak monochromatic probe field, the enhanced Kerr nonlinearity can be achieved in multiple separate transparent windows due to interference effect of multiple two-photon Raman channels. Furthermore, the property of Kerr nonlinearity can be controlled by the sum of the relative phases of the sideband components of the trichromatic pump field compared to the central component.
Resumo:
Deep-subwavelength gratings with periodicities of 170, 120, and 70 nm can be observed on highly oriented pyrolytic graphite irradiated by a femtosecond (fs) laser at 800 nm. Under picosecond laser irradiation, such gratings likewise can be produced. Interestingly, the 170-nm grating is also observed on single-crystal diamond irradiated by the 800-nm fs laser. In our opinion, the optical properties of the high-excited state of material surface play a key role for the formation of the deep-subwavelength gratings. The numerical simulations of the graphite deep-subwavelength grating at normal and high-excited states confirm that in the groove the light intensity can be extraordinarily enhanced via cavity-mode excitation in the condition of transverse-magnetic wave irradiation with near-ablation-threshold fluences. This field enhancement of polarization sensitiveness in deep-subwavelength apertures acts as an important feedback mechanism for the growth and polarization dependence of the deep-subwavelength gratings. In addition, we suggest that surface plasmons are responsible for the formation of seed deep-subwavelength apertures with a particular periodicity and the initial polarization dependence. Finally, we propose that the nanoscale Coulomb explosion occurring in the groove is responsible for the ultrafast nonthermal ablation mechanism.
Resumo:
飞秒激光微加工技术具有加工精度高、热效应小、损伤阈值低以及能够实现真正的三维微结构加工等优点,这些特性是传统的激光加工技术所无法取代的。首先回顾了激光微加工和超短脉冲激光技术的发展历史,然后介绍超短脉冲激光与金属和介质材料相互作用的机制,接着阐述了飞秒激光直写、干涉和投影制备等各种加工方法的原理,重点讨论飞秒激光在三维光子器件集成、微流体芯片制备及其在生化传感方面的应用等,最后展望了飞秒激光微加工领域所面临的机遇和挑战,指出了未来的研究方向。
Resumo:
The effects of vacuum-induced coherence (VIC) on the properties of the absorption and gain of the probe field in an equispaced three-level ladder atomic system are investigated. It is found that lasing without inversion (LWI) is remarkably enhanced due to the effect of VIC in the case of the small incoherent pump rate.
Resumo:
We present a universal analyzer for the three-particle Greenberger-Horne-Zeilinger (GHZ) states with quantum nondemolition parity detectors and linear-optics elements. In our scheme, all of the three-photon GHZ states can be discriminated with nearly unity probability in the regime of weak nonlinearity feasible at the present state of the art experimentally. We also show that our scheme can be easily extended to the analysis of the multi-particle GHZ states.
Resumo:
We show that the peak intensity of single attosecond x-ray pulses is enhanced by 1 or 2 orders of magnitude, the pulse duration is greatly compressed, and the optimal propagation distance is shortened by genetic algorithm optimization of the chirp and initial phase of 5 fs laser pulses. However, as the laser intensity increases, more efficient nonadiabatic self-phase matching can lead to a dramatically enhanced harmonic yield, and the efficiency of optimization decreases in the enhancement and compression of the generated attosecond pulses. (c) 2006 Optical Society of America.
Resumo:
Adaptive optics (AO) corrects distortions created by atmospheric turbulence and delivers diffraction-limited images on ground-based telescopes. The vastly improved spatial resolution and sensitivity has been utilized for studying everything from the magnetic fields of sunspots upto the internal dynamics of high-redshift galaxies. This thesis about AO science from small and large telescopes is divided into two parts: Robo-AO and magnetar kinematics.
In the first part, I discuss the construction and performance of the world’s first fully autonomous visible light AO system, Robo-AO, at the Palomar 60-inch telescope. Robo-AO operates extremely efficiently with an overhead < 50s, typically observing about 22 targets every hour. We have performed large AO programs observing a total of over 7,500 targets since May 2012. In the visible band, the images have a Strehl ratio of about 10% and achieve a contrast of upto 6 magnitudes at a separation of 1′′. The full-width at half maximum achieved is 110–130 milli-arcsecond. I describe how Robo-AO is used to constrain the evolutionary models of low-mass pre-main-sequence stars by measuring resolved spectral energy distributions of stellar multiples in the visible band, more than doubling the current sample. I conclude this part with a discussion of possible future improvements to the Robo-AO system.
In the second part, I describe a study of magnetar kinematics using high-resolution near-infrared (NIR) AO imaging from the 10-meter Keck II telescope. Measuring the proper motions of five magnetars with a precision of upto 0.7 milli-arcsecond/yr, we have more than tripled the previously known sample of magnetar proper motions and proved that magnetar kinematics are equivalent to those of radio pulsars. We conclusively showed that SGR 1900+14 and SGR 1806-20 were ejected from the stellar clusters with which they were traditionally associated. The inferred kinematic ages of these two magnetars are 6±1.8 kyr and 650±300 yr respectively. These ages are a factor of three to four times greater than their respective characteristic ages. The calculated braking index is close to unity as compared to three for the vacuum dipole model and 2.5-2.8 as measured for young pulsars. I conclude this section by describing a search for NIR counterparts of new magnetars and a future promise of polarimetric investigation of a magnetars’ NIR emission mechanism.