909 resultados para Dietary Assessment Methods
Resumo:
INTRODUCTION: Congenital hypogonadotropic hypogonadism (CHH) is a rare, genetic, reproductive endocrine disorder characterized by absent puberty and infertility. Limited information is available on the psychosocial impact of CHH and psychosexual development in these patients. AIM: The aim of this study was to determine the impact of CHH on psychosexual development in men on long-term treatment. METHODS: A sequential mixed methods explanatory design was used. First, an online survey (quantitative) was used to quantify the frequency of psychosexual problems among CHH men. Second, patient focus groups (qualitative) were conducted to explore survey findings in detail and develop a working model to guide potential nursing and interdisciplinary interventions. MAIN OUTCOME MEASURES: Patient characteristics, frequency of body shame, difficulty with intimate relationships, and never having been sexually active were assessed. Additionally, we collected subjective patient-reported outcomes regarding the impact of CHH on psychological/emotional well-being, intimate relationships, and sexual activity. RESULTS: A total of 101 CHH men on long-term treatment (>1 year) were included for the analysis of the online survey (mean age 37 ± 11 years, range 19-66, median 36). Half (52/101, 51%) of the men had been seen at a specialized academic center and 37/101 (37%) reported having had fertility-inducing treatment. A high percentage of CHH men experience psychosexual problems including difficulty with intimate relationships (70%) and body image concerns/body shame (94/101, 93%), and the percentage of men never having been sexually active is five times the rate in a reference group (26% vs. 5.4%, P < 0.001). Focus groups revealed persisting body shame and low self-esteem despite long-term treatment that has lasting impact on psychosexual functioning. CONCLUSIONS: CHH men frequently experience psychosexual problems that pose barriers to intimate relationships and initiating sexual activity. These lingering effects cause significant distress and are not ameliorated by long-term treatment. Psychosexual assessment in CHH men with appropriate psychological support and treatment should be warranted in these patients. Dwyer AA, Quinton R, Pitteloud N, and Morin D. Psychosexual development in men with congenital hypogonadotropic hypogonadism on long-term treatment: A mixed methods study. Sex Med 2015;3:32-41.
Resumo:
BACKGROUND: Pancreaticoduodenectomies (PD) still have a substantial mortality rate. Recently, different scores have been published to predict the mortality risk pre-operatively after PD. This retrospective study was designed to perform an external assessment of an Early Mortality Risk Score (EMRS). METHODS: From 2000 to 2012, all PD cases performed at our institution were documented. Only patients treated for pancreatic head adenocarcinomas were included. Survival time and EMRS (based on age, tumour size, tumour differentiation and comorbidities) were calculated for every patient. Relative risks (RR) of early death 9 and 12 months after PD were then calculated. RESULTS: Of 270 PD for various aetiologies, 120 PD for adenocarcinomas were included. The median follow-up was 37 months, and the overall median survival was 19 months. EMRS of 4 showed a mortality RR of 5.1 at 9 months (P = 0.048) and of 4.5 at 12 months (P = 0.020). CONCLUSIONS: EMRS of 4 is a predictor of tumour-related mortality at 9 and 12 months after PD for adenocarcinoma. The EMRS was externally assessed in our patient cohort and can be implemented in clinical practice. Clinical implications of this score still need to be studied.
Resumo:
Taloudellisen laskennan yhdistäminen elinkaariarviointiin (LCA) on alkanut kiinnostaa eri teollisuuden aloja maailmanlaajuisesti viime aikoina. Useat LCA-tietokoneohjelmat sisältävät kustannuslaskentaominaisuuksia ja yksittäiset projektit ovat yhdistäneet ympäristö- ja talouslaskentamenetelmiä. Tässä projektissa tutkitaan näiden yhdistelmien soveltuvuutta suomalaiselle sellu- ja paperiteollisuudelle, sekä kustannuslaskentaominaisuuden lisäämistä KCL:n LCA-ohjelmaan, KCL-ECO 3.0:aan. Kaikki tutkimuksen aikana löytyneet menetelmät, jotka yhdistävät LCA:n ja taloudellista laskentaa, on esitelty tässä työssä. Monet näistä käyttävät elinkaarikustannusarviointia (LCCA). Periaatteessa elinkaari määritellään eri tavalla LCCA:ssa ja LCA:ssa, mikä luo haasteita näiden menetelmien yhdistämiselle. Sopiva elinkaari tulee määritellä laskennan tavoitteiden mukaisesti. Työssä esitellään suositusmenetelmä, joka lähtee suomalaisen sellu- ja paperiteollisuuden erikoispiirteistä. Perusvaatimuksena on yhteensopivuus tavanomaisesti paperin LCA:ssa käytetyn elinkaaren kanssa. Menetelmän yhdistäminen KCL-ECO 3.0:aan on käsitelty yksityiskohtaisesti.
Resumo:
Healthcare accreditation models generally include indicators related to healthcare employees' perceptions (e.g. satisfaction, career development, and health safety). During the accreditation process, organizations are asked to demonstrate the methods with which assessments are made. However, none of the models provide standardized systems for the assessment of employees. In this study, we analyzed the psychometric properties of an instrument for the assessment of nurses' perceptions as indicators of human capital quality in healthcare organizations. The Human Capital Questionnaire was applied to a sample of 902 nurses in four European countries (Spain, Portugal, Poland, and the UK). Exploratory factor analysis identified six factors: satisfaction with leadership, identification and commitment, satisfaction with participation, staff well-being, career development opportunities, and motivation. The results showed the validity and reliability of the questionnaire, which when applied to healthcare organizations, provide a better understanding of nurses' perceptions, and is a parsimonious instrument for assessment and organizational accreditation. From a practical point of view, improving the quality of human capital, by analyzing nurses and other healthcare employees' perceptions, is related to workforce empowerment.
Resumo:
In recent years, there has been an increased attention towards the composition of feeding fats. In the aftermath of the BSE crisis all animal by-products utilised in animal nutrition have been subjected to close scrutiny. Regulation requires that the material belongs to the category of animal by-products fit for human consumption. This implies the use of reliable techniques in order to insure the safety of products. The feasibility of using rapid and non-destructive methods, to control the composition of feedstuffs on animal fats has been studied. Fourier Transform Raman spectroscopy has been chosen for its advantage to give detailed structural information. Data were treated using chemometric methods as PCA and PLS-DA which have permitted to separate well the different classes of animal fats. The same methodology was applied on fats from various types of feedstock and production technology processes. PLS-DA model for the discrimination of animal fats from the other categories presents a sensitivity and a specificity of 0.958 and 0.914, respectively. These results encourage the use of FT-Raman spectroscopy to discriminate animal fats.
Resumo:
BACKGROUND: In a high proportion of patients with favorable outcome after aneurysmal subarachnoid hemorrhage (aSAH), neuropsychological deficits, depression, anxiety, and fatigue are responsible for the inability to return to their regular premorbid life and pursue their professional careers. These problems often remain unrecognized, as no recommendations concerning a standardized comprehensive assessment have yet found entry into clinical routines. METHODS: To establish a nationwide standard concerning a comprehensive assessment after aSAH, representatives of all neuropsychological and neurosurgical departments of those eight Swiss centers treating acute aSAH have agreed on a common protocol. In addition, a battery of questionnaires and neuropsychological tests was selected, optimally suited to the deficits found most prevalent in aSAH patients that was available in different languages and standardized. RESULTS: We propose a baseline inpatient neuropsychological screening using the Montreal Cognitive Assessment (MoCA) between days 14 and 28 after aSAH. In an outpatient setting at 3 and 12 months after bleeding, we recommend a neuropsychological examination, testing all relevant domains including attention, speed of information processing, executive functions, verbal and visual learning/memory, language, visuo-perceptual abilities, and premorbid intelligence. In addition, a detailed assessment capturing anxiety, depression, fatigue, symptoms of frontal lobe affection, and quality of life should be performed. CONCLUSIONS: This standardized neuropsychological assessment will lead to a more comprehensive assessment of the patient, facilitate the detection and subsequent treatment of previously unrecognized but relevant impairments, and help to determine the incidence, characteristics, modifiable risk factors, and the clinical course of these impairments after aSAH.
Resumo:
BACKGROUND: For free-breathing cardiovascular magnetic resonance (CMR), the self-navigation technique recently emerged, which is expected to deliver high-quality data with a high success rate. The purpose of this study was to test the hypothesis that self-navigated 3D-CMR enables the reliable assessment of cardiovascular anatomy in patients with congenital heart disease (CHD) and to define factors that affect image quality. METHODS: CHD patients ≥2 years-old and referred for CMR for initial assessment or for a follow-up study were included to undergo a free-breathing self-navigated 3D CMR at 1.5T. Performance criteria were: correct description of cardiac segmental anatomy, overall image quality, coronary artery visibility, and reproducibility of great vessels diameter measurements. Factors associated with insufficient image quality were identified using multivariate logistic regression. RESULTS: Self-navigated CMR was performed in 105 patients (55% male, 23 ± 12y). Correct segmental description was achieved in 93% and 96% for observer 1 and 2, respectively. Diagnostic quality was obtained in 90% of examinations, and it increased to 94% if contrast-enhanced. Left anterior descending, circumflex, and right coronary arteries were visualized in 93%, 87% and 98%, respectively. Younger age, higher heart rate, lower ejection fraction, and lack of contrast medium were independently associated with reduced image quality. However, a similar rate of diagnostic image quality was obtained in children and adults. CONCLUSION: In patients with CHD, self-navigated free-breathing CMR provides high-resolution 3D visualization of the heart and great vessels with excellent robustness.
Resumo:
In this article, we show how the use of state-of-the-art methods in computer science based on machine perception and learning allows the unobtrusive capture and automated analysis of interpersonal behavior in real time (social sensing). Given the high ecological validity of the behavioral sensing, the ease of behavioral-cue extraction for large groups over long observation periods in the field, the possibility of investigating completely new research questions, and the ability to provide people with immediate feedback on behavior, social sensing will fundamentally impact psychology.
Resumo:
It is axiomatic that our planet is extensively inhabited by diverse micro-organisms such as bacteria, yet the absolute diversity of different bacterial species is widely held to be unknown. Different bacteria can be found from the depths of the oceans to the top of the mountains; even the air is more or less colonized by bacteria. Most bacteria are either harmless or even advantageous to human beings but there are also bacteria, which can cause severe infectious diseases or spoil the supplies intended for human consumption. Therefore, it is vitally important not only to be able to detect and enumerate bacteria but also to assess their viability and possible harmfulness. Whilst the growth of bacteria is remarkably fast under optimum conditions and easy to detect by cultural methods, most bacteria are believed to lie in stationary phase of growth in which the actual growth is ceased and thus bacteria may simply be undetectable by cultural techniques. Additionally, several injurious factors such as low and high temperature or deficiency of nutrients can turn bacteria into a viable but non-culturable state (VBNC) that cannot be detected by cultural methods. Thereby, various noncultural techniques developed for the assessment of bacterial viability and killing have widely been exploited in modern microbiology. However, only a few methods are suitable for kinetic measurements, which enable the real-time detection of bacterial growth and viability. The present study describes alternative methods for measuring bacterial viability and killing as well as detecting the effects of various antimicrobial agents on bacteria on a real-time basis. The suitability of bacterial (lux) and beetle (luc) luciferases as well as green fluorescent protein (GFP) to act as a marker of bacterial viability and cell growth was tested. In particular, a multiparameter microplate assay based on GFP-luciferase combination as well as a flow cytometric measurement based on GFP-PI combination were developed to perform divergent viability analyses. The results obtained suggest that the antimicrobial activities of various drugs against bacteria could be successfully measured using both of these methods. Specifically, the data reliability of flow cytometric viability analysis was notably improved as GFP was utilized in the assay. A fluoro-luminometric microplate assay enabled kinetic measurements, which significantly improved and accelerated the assessment of bacterial viability compared to more conventional viability assays such as plate counting. Moreover, the multiparameter assay made simultaneous detection of GFP fluorescence and luciferase bioluminescence possible and provided extensive information about multiple cellular parameters in single assay, thereby increasing the accuracy of the assessment of the kinetics of antimicrobial activities on target bacteria.
Resumo:
Characterizing the geological features and structures in three dimensions over inaccessible rock cliffs is needed to assess natural hazards such as rockfalls and rockslides and also to perform investigations aimed at mapping geological contacts and building stratigraphy and fold models. Indeed, the detailed 3D data, such as LiDAR point clouds, allow to study accurately the hazard processes and the structure of geologic features, in particular in vertical and overhanging rock slopes. Thus, 3D geological models have a great potential of being applied to a wide range of geological investigations both in research and applied geology projects, such as mines, tunnels and reservoirs. Recent development of ground-based remote sensing techniques (LiDAR, photogrammetry and multispectral / hyperspectral images) are revolutionizing the acquisition of morphological and geological information. As a consequence, there is a great potential for improving the modeling of geological bodies as well as failure mechanisms and stability conditions by integrating detailed remote data. During the past ten years several large rockfall events occurred along important transportation corridors where millions of people travel every year (Switzerland: Gotthard motorway and railway; Canada: Sea to sky highway between Vancouver and Whistler). These events show that there is still a lack of knowledge concerning the detection of potential rockfalls, making mountain residential settlements and roads highly risky. It is necessary to understand the main factors that destabilize rocky outcrops even if inventories are lacking and if no clear morphological evidences of rockfall activity are observed. In order to increase the possibilities of forecasting potential future landslides, it is crucial to understand the evolution of rock slope stability. Defining the areas theoretically most prone to rockfalls can be particularly useful to simulate trajectory profiles and to generate hazard maps, which are the basis for land use planning in mountainous regions. The most important questions to address in order to assess rockfall hazard are: Where are the most probable sources for future rockfalls located? What are the frequencies of occurrence of these rockfalls? I characterized the fracturing patterns in the field and with LiDAR point clouds. Afterwards, I developed a model to compute the failure mechanisms on terrestrial point clouds in order to assess the susceptibility to rockfalls at the cliff scale. Similar procedures were already available to evaluate the susceptibility to rockfalls based on aerial digital elevation models. This new model gives the possibility to detect the most susceptible rockfall sources with unprecented detail in the vertical and overhanging areas. The results of the computation of the most probable rockfall source areas in granitic cliffs of Yosemite Valley and Mont-Blanc massif were then compared to the inventoried rockfall events to validate the calculation methods. Yosemite Valley was chosen as a test area because it has a particularly strong rockfall activity (about one rockfall every week) which leads to a high rockfall hazard. The west face of the Dru was also chosen for the relevant rockfall activity and especially because it was affected by some of the largest rockfalls that occurred in the Alps during the last 10 years. Moreover, both areas were suitable because of their huge vertical and overhanging cliffs that are difficult to study with classical methods. Limit equilibrium models have been applied to several case studies to evaluate the effects of different parameters on the stability of rockslope areas. The impact of the degradation of rockbridges on the stability of large compartments in the west face of the Dru was assessed using finite element modeling. In particular I conducted a back-analysis of the large rockfall event of 2005 (265'000 m3) by integrating field observations of joint conditions, characteristics of fracturing pattern and results of geomechanical tests on the intact rock. These analyses improved our understanding of the factors that influence the stability of rock compartments and were used to define the most probable future rockfall volumes at the Dru. Terrestrial laser scanning point clouds were also successfully employed to perform geological mapping in 3D, using the intensity of the backscattered signal. Another technique to obtain vertical geological maps is combining triangulated TLS mesh with 2D geological maps. At El Capitan (Yosemite Valley) we built a georeferenced vertical map of the main plutonio rocks that was used to investigate the reasons for preferential rockwall retreat rate. Additional efforts to characterize the erosion rate were made at Monte Generoso (Ticino, southern Switzerland) where I attempted to improve the estimation of long term erosion by taking into account also the volumes of the unstable rock compartments. Eventually, the following points summarize the main out puts of my research: The new model to compute the failure mechanisms and the rockfall susceptibility with 3D point clouds allows to define accurately the most probable rockfall source areas at the cliff scale. The analysis of the rockbridges at the Dru shows the potential of integrating detailed measurements of the fractures in geomechanical models of rockmass stability. The correction of the LiDAR intensity signal gives the possibility to classify a point cloud according to the rock type and then use this information to model complex geologic structures. The integration of these results, on rockmass fracturing and composition, with existing methods can improve rockfall hazard assessments and enhance the interpretation of the evolution of steep rockslopes. -- La caractérisation de la géologie en 3D pour des parois rocheuses inaccessibles est une étape nécessaire pour évaluer les dangers naturels tels que chutes de blocs et glissements rocheux, mais aussi pour réaliser des modèles stratigraphiques ou de structures plissées. Les modèles géologiques 3D ont un grand potentiel pour être appliqués dans une vaste gamme de travaux géologiques dans le domaine de la recherche, mais aussi dans des projets appliqués comme les mines, les tunnels ou les réservoirs. Les développements récents des outils de télédétection terrestre (LiDAR, photogrammétrie et imagerie multispectrale / hyperspectrale) sont en train de révolutionner l'acquisition d'informations géomorphologiques et géologiques. Par conséquence, il y a un grand potentiel d'amélioration pour la modélisation d'objets géologiques, ainsi que des mécanismes de rupture et des conditions de stabilité, en intégrant des données détaillées acquises à distance. Pour augmenter les possibilités de prévoir les éboulements futurs, il est fondamental de comprendre l'évolution actuelle de la stabilité des parois rocheuses. Définir les zones qui sont théoriquement plus propices aux chutes de blocs peut être très utile pour simuler les trajectoires de propagation des blocs et pour réaliser des cartes de danger, qui constituent la base de l'aménagement du territoire dans les régions de montagne. Les questions plus importantes à résoudre pour estimer le danger de chutes de blocs sont : Où se situent les sources plus probables pour les chutes de blocs et éboulement futurs ? Avec quelle fréquence vont se produire ces événements ? Donc, j'ai caractérisé les réseaux de fractures sur le terrain et avec des nuages de points LiDAR. Ensuite, j'ai développé un modèle pour calculer les mécanismes de rupture directement sur les nuages de points pour pouvoir évaluer la susceptibilité au déclenchement de chutes de blocs à l'échelle de la paroi. Les zones sources de chutes de blocs les plus probables dans les parois granitiques de la vallée de Yosemite et du massif du Mont-Blanc ont été calculées et ensuite comparés aux inventaires des événements pour vérifier les méthodes. Des modèles d'équilibre limite ont été appliqués à plusieurs cas d'études pour évaluer les effets de différents paramètres sur la stabilité des parois. L'impact de la dégradation des ponts rocheux sur la stabilité de grands compartiments de roche dans la paroi ouest du Petit Dru a été évalué en utilisant la modélisation par éléments finis. En particulier j'ai analysé le grand éboulement de 2005 (265'000 m3), qui a emporté l'entier du pilier sud-ouest. Dans le modèle j'ai intégré des observations des conditions des joints, les caractéristiques du réseau de fractures et les résultats de tests géoméchaniques sur la roche intacte. Ces analyses ont amélioré l'estimation des paramètres qui influencent la stabilité des compartiments rocheux et ont servi pour définir des volumes probables pour des éboulements futurs. Les nuages de points obtenus avec le scanner laser terrestre ont été utilisés avec succès aussi pour produire des cartes géologiques en 3D, en utilisant l'intensité du signal réfléchi. Une autre technique pour obtenir des cartes géologiques des zones verticales consiste à combiner un maillage LiDAR avec une carte géologique en 2D. A El Capitan (Yosemite Valley) nous avons pu géoréferencer une carte verticale des principales roches plutoniques que j'ai utilisé ensuite pour étudier les raisons d'une érosion préférentielle de certaines zones de la paroi. D'autres efforts pour quantifier le taux d'érosion ont été effectués au Monte Generoso (Ticino, Suisse) où j'ai essayé d'améliorer l'estimation de l'érosion au long terme en prenant en compte les volumes des compartiments rocheux instables. L'intégration de ces résultats, sur la fracturation et la composition de l'amas rocheux, avec les méthodes existantes permet d'améliorer la prise en compte de l'aléa chute de pierres et éboulements et augmente les possibilités d'interprétation de l'évolution des parois rocheuses.
Resumo:
Human biomonitoring (HBM) is an effective tool for assessing actual exposure to chemicals that takes into account all routes of intake. Although hair analysis is considered to be an optimal biomarker for assessing mercury exposure, the lack of harmonization as regards sampling and analytical procedures has often limited the comparison of data at national and international level. The European-funded projects COPHES and DEMOCOPHES developed and tested a harmonized European approach to Human Biomonitoring in response to the European Environment and Health Action Plan. Herein we describe the quality assurance program (QAP) for assessing mercury levels in hair samples from more than 1800 mother-child pairs recruited in 17 European countries. To ensure the comparability of the results, standard operating procedures (SOPs) for sampling and for mercury analysis were drafted and distributed to participating laboratories. Training sessions were organized for field workers and four external quality-assessment exercises (ICI/EQUAS), followed by the corresponding web conferences, were organized between March 2011 and February 2012. ICI/EQUAS used native hair samples at two mercury concentration ranges (0.20-0.71 and 0.80-1.63) per exercise. The results revealed relative standard deviations of 7.87-13.55% and 4.04-11.31% for the low and high mercury concentration ranges, respectively. A total of 16 out of 18 participating laboratories the QAP requirements and were allowed to analyze samples from the DEMOCOPHES pilot study. Web conferences after each ICI/EQUAS revealed this to be a new and effective tool for improving analytical performance and increasing capacity building. The procedure developed and tested in COPHES/DEMOCOPHES would be optimal for application on a global scale as regards implementation of the Minamata Convention on Mercury.
Resumo:
The number of qualitative research methods has grown substantially over the last twenty years, both in social sciences and, more recently, in the health sciences. This growth came with questions on the quality criteria needed to evaluate this work, and numerous guidelines were published. The latters include many discrepancies though, both in their vocabulary and construction. Many expert evaluators decry the absence of consensual and reliable evaluation tools. The authors present the results of an evaluation of 58 existing guidelines in 4 major health science fields (medicine and epidemiology; nursing and health education; social sciences and public health; psychology / psychiatry, research methods and organization) by expert users (article reviewers, experts allocating funds, editors, etc.). The results propose a toolbox containing 12 consensual criteria with the definitions given by expert users. They also indicate in which disciplinary field each type of criteria is known to be more or less essential. Nevertheless, the authors highlight the limitations of the criteria comparability, as soon as one focuses on their specific definitions. They conclude that each criterion in the toolbox must be explained to come to broader consensus and identify definitions that are consensual to all the fields examined and easily operational.
Resumo:
This chapter presents possible uses and examples of Monte Carlo methods for the evaluation of uncertainties in the field of radionuclide metrology. The method is already well documented in GUM supplement 1, but here we present a more restrictive approach, where the quantities of interest calculated by the Monte Carlo method are estimators of the expectation and standard deviation of the measurand, and the Monte Carlo method is used to propagate the uncertainties of the input parameters through the measurement model. This approach is illustrated by an example of the activity calibration of a 103Pd source by liquid scintillation counting and the calculation of a linear regression on experimental data points. An electronic supplement presents some algorithms which may be used to generate random numbers with various statistical distributions, for the implementation of this Monte Carlo calculation method.
Resumo:
INTRODUCTION: Two important risk factors for abnormal neurodevelopment are preterm birth and neonatal hypoxic ischemic encephalopathy. The new revisions of Griffiths Mental Development Scale (Griffiths-II, [1996]) and the Bayley Scales of Infant Development (BSID-II, [1993]) are two of the most frequently used developmental diagnostics tests. The Griffiths-II is divided into five subscales and a global development quotient (QD), and the BSID-II is divided into two scales, the Mental scale (MDI) and the Psychomotor scale (PDI). The main objective of this research was to establish the extent to which developmental diagnoses obtained using the new revisions of these two tests are comparable for a given child. MATERIAL AND METHODS: Retrospective study of 18-months-old high-risk children examined with both tests in the follow-up Unit of the Clinic of Neonatology of our tertiary care university Hospital between 2011 and 2012. To determine the concurrent validity of the two tests paired t-tests and Pearson product-moment correlation coefficients were computed. Using the BSID-II as a gold standard, the performance of the Griffiths-II was analyzed with receiver operating curves. RESULTS: 61 patients (80.3% preterm, 14.7% neonatal asphyxia) were examined. For the BSID-II the MDI mean was 96.21 (range 67-133) and the PDI mean was 87.72 (range 49-114). For the Griffiths-II, the QD mean was 96.95 (range 60-124), the locomotors subscale mean was 92.57 (range 49-119). The score of the Griffiths locomotors subscale was significantly higher than the PDI (p<0.001). Between the Griffiths-II QD and the BSID-II MDI no significant difference was found, and the area under the curve was 0.93, showing good validity. All correlations were high and significant with a Pearson product-moment correlation coefficient >0.8. CONCLUSIONS: The meaning of the results for a given child was the same for the two tests. Two scores were interchangeable, the Griffiths-II QD and the BSID-II MDI.
Resumo:
Our inability to adequately treat many patients with refractory epilepsy caused by focal cortical dysplasia (FCD), surgical inaccessibility and failures are significant clinical drawbacks. The targeting of physiologic features of epileptogenesis in FCD and colocalizing functionality has enhanced completeness of surgical resection, the main determinant of outcome. Electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) and magnetoencephalography are helpful in guiding electrode implantation and surgical treatment, and high-frequency oscillations help defining the extent of the epileptogenic dysplasia. Ultra high-field MRI has a role in understanding the laminar organization of the cortex, and fluorodeoxyglucose-positron emission tomography (FDG-PET) is highly sensitive for detecting FCD in MRI-negative cases. Multimodal imaging is clinically valuable, either by improving the rate of postoperative seizure freedom or by reducing postoperative deficits. However, there is no level 1 evidence that it improves outcomes. Proof for a specific effect of antiepileptic drugs (AEDs) in FCD is lacking. Pathogenic mutations recently described in mammalian target of rapamycin (mTOR) genes in FCD have yielded important insights into novel treatment options with mTOR inhibitors, which might represent an example of personalized treatment of epilepsy based on the known mechanisms of disease. The ketogenic diet (KD) has been demonstrated to be particularly effective in children with epilepsy caused by structural abnormalities, especially FCD. It attenuates epigenetic chromatin modifications, a master regulator for gene expression and functional adaptation of the cell, thereby modifying disease progression. This could imply lasting benefit of dietary manipulation. Neurostimulation techniques have produced variable clinical outcomes in FCD. In widespread dysplasias, vagus nerve stimulation (VNS) has achieved responder rates >50%; however, the efficacy of noninvasive cranial nerve stimulation modalities such as transcutaneous VNS (tVNS) and noninvasive (nVNS) requires further study. Although review of current strategies underscores the serious shortcomings of treatment-resistant cases, initial evidence from novel approaches suggests that future success is possible.