998 resultados para Diel activity
Resumo:
Ectodermal organogenesis is regulated by inductive and reciprocal signalling cascades that involve multiple signal molecules in several conserved families. Ectodysplasin-A (Eda), a tumour necrosis factor-like signalling molecule, and its receptor Edar are required for the development of a number of ectodermal organs in vertebrates. In mice, lack of Eda leads to failure in primary hair placode formation and missing or abnormally shaped teeth, whereas mice overexpressing Eda are characterized by enlarged hair placodes and supernumerary teeth and mammary glands. Here, we report two signalling outcomes of the Eda pathway: suppression of bone morphogenetic protein (Bmp) activity and upregulation of sonic hedgehog (Shh) signalling. Recombinant Eda counteracted Bmp4 activity in developing teeth and, importantly, inhibition of BMP activity by exogenous noggin partially restored primary hair placode formation in Eda-deficient skin in vitro, indicating that suppression of Bmp activity was compromised in the absence of Eda. The downstream effects of the Eda pathway are likely to be mediated by transcription factor nuclear factor-kappaB (NF-kappaB), but the transcriptional targets of Edar have remained unknown. Using a quantitative approach, we show in cultured embryonic skin that Eda induced the expression of two Bmp inhibitors, Ccn2/Ctgf (CCN family protein 2/connective tissue growth factor) and follistatin. Moreover, our data indicate that Shh is a likely transcriptional target of Edar, but, unlike noggin, recombinant Shh was unable to rescue primary hair placode formation in Eda-deficient skin explants.
Resumo:
The application of microbial biocontrol agents for the control of fungal plant diseases and plant insect pests is a promising approach in the development of environmentally benign pest management strategies. The ideal biocontrol organism would be a bacterium or a fungus with activity against both, insect pests and fungal pathogens. Here we demonstrate the oral insecticidal activity of the root colonizing Pseudomonas fluorescens CHA0, which is so far known for its capacity to efficiently suppress fungal plant pathogens. Feeding assays with CHA0-sprayed leaves showed that this strain displays oral insecticidal activity and is able to efficiently kill larvae of three important insect pests. We further show data indicating that the Fit insect toxin produced by CHA0 and also metabolites controlled by the global regulator GacA contribute to oral insect toxicity.
Resumo:
Pseudomonas entomophila is an entomopathogenic bacterium that is able to infect and kill Drosophila melanogaster upon ingestion. Its genome sequence suggests that it is a versatile soil bacterium closely related to Pseudomonas putida. The GacS/GacA two-component system plays a key role in P. entomophila pathogenicity, controlling many putative virulence factors and AprA, a secreted protease important to escape the fly immune response. P. entomophila secretes a strong diffusible hemolytic activity. Here, we showed that this activity is linked to the production of a new cyclic lipopeptide containing 14 amino acids and a 3-C(10)OH fatty acid that we called entolysin. Three nonribosomal peptide synthetases (EtlA, EtlB, EtlC) were identified as responsible for entolysin biosynthesis. Two additional components (EtlR, MacAB) are necessary for its production and secretion. The P. entomophila GacS/GacA two-component system regulates entolysin production, and we demonstrated that its functioning requires two small RNAs and two RsmA-like proteins. Finally, entolysin is required for swarming motility, as described for other lipopeptides, but it does not participate in the virulence of P. entomophila for Drosophila. While investigating the physiological role of entolysin, we also uncovered new phenotypes associated with P. entomophila, including strong biocontrol abilities.
Resumo:
In cerebral ischemic preconditioning (IPC), a first sublethal ischemia increases the resistance of neurons to a subsequent severe ischemia. Despite numerous studies, the mechanisms are not yet fully understood. Our goal is to develop an in vitro model of IPC on hippocampal organotypic slice cultures. Instead of anoxia, we chose to apply varying degrees of hypoxia that allows us various levels of insult graded from mild to severe. Cultures are exposed to combined oxygen and glucose deprivation (OGD) of varying intensities, ranging from mild to severe, assessing both the electrical activity and cell death. IPC was accomplished by exposure to the mildest ischemia condition (10% of O2 for 15 min) 24 h before the severe deprivation (5% of O2 for 30 min). Interestingly, IPC not only prevented delayed ischemic cell death 6 days after insult but also the transient loss of evoked potential response. The major interest and advantage of this system over both the acute slice preparation and primary cell cultures is the ability to simultaneously measure the delayed neuronal damage and neuronal function.
Resumo:
Schistosomula of Schistosoma mansoni became resistant to antibody-dependent complement damage in vitro after pre-incubation with normal human erythrocytes (NHuE) whatever the ABO or Rh blood group. Resistant parasites were shown to acquire host decay accelerating factor (DAF) , a 70 kDa glycoprotein attached to the membrane of NHue by a GPI anchor. IgG2a mAb anti-human DAF (IA10) immunoprecipitated a 70 kDa molecule from 125I-labeled schistosomula pre-incubated with NHuE and inhibited their resistance to complement-dependent killing in vtro. Incubationof schistosomula with erytrocytes from patients with paroxsimal nocturnal hemoglobinuria (PNHE) or SRBC, wich are DAF-deficient, did not protect the parasites from complement lesion. Supernatant of 100,000 x g collected from NHuE incubated for 24 h in defined medium was shown to contain a soluble form of DAF and to protect schistosomula from complement killing. Schistosomula treated with trypsin before incubation with NHuE ghosts did not become resistant to complement damage. On the other hand, pre-treatment with chymotrypsin did not interfere with the acquisition of resistance by the schistosomula. These results indicate that, in vitro, NHuE DAF can be transferred to schistosomula in a soluble form and that the binding of this molecule to the parasite surface is dependent upon trypsin-sensitive chymotrypsin-insensitive polipeptide(s) present on the surface of the worm.
Resumo:
BACKGROUND/OBJECTIVES: To measure resting metabolic rate (RMR), activity energy expenditure (AEE), total energy expenditure (TEE) and physical activity pattern, that is, duration and intensity (in metabolic equivalents, METs) of activities performed in late pregnancy compared with postpartum in healthy, well-nourished women living in Switzerland. SUBJECTS/METHODS: Weight, height, RMR, AEE, TEE and physical activity patterns were measured longitudinally in 27 healthy women aged 23-40 years at 38.2+/-1.5 weeks of gestation and 40.0+/-7.2 weeks postpartum. RESULTS: The RMR during late pregnancy was 7480 kJ per day, that is, 1320+/-760 kJ per day (21.4%) higher than the postpartum RMR (P<0.001). Absolute changes in RMR were positively correlated with the corresponding changes in body weight (r=0.61, P<0.001). RMR per kg body weight was similar in late pregnancy vs postpartum (P=0.28). AEE per kg during pregnancy and postpartum was 40+/-13 and 50+/-20 kJ/kg, respectively (P=0.001). There were significant differences in daily time spent at METs<1.5 (1067 vs 998 min, P=0.045), at 2.5< or =METs <3.0 (58 vs 82 min, P=0.002) and METs> or =6 (1 vs 6 min, P=0.014) during pregnancy and postpartum, respectively. CONCLUSIONS: Energy expenditure in healthy women living in Switzerland increases in pregnancy compared with the postpartum state. Additional energy expenditure is primarily attributed to an increase in RMR, which is partly compensated by a decrease in AEE. The decrease in physical activity-related energy costs is achieved by selecting less demanding activities and should be taken into account when defining extra energy requirements for late pregnancy in Switzerland.
Resumo:
Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM). To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM) or switched to different glucose concentrations (0.5 or 10 mM). None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX) an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism.
Resumo:
The observation that murine thymocytes increase their proliferation to interleukin 1 (IL-1) in the presence of phytohemagglutinin (PHA) when pre-incubated with interleukin 2 (IL-2) allowed the introduction of a modified assay for the measurement of IL-1 or the search of thymocyte-inducing proliferative activities in biological samples. Pre-incubation of thymocytes for 24 hr with 50 u/ml IL-2, followed by washings, elicited their maximal response to IL-1 in the usual lymphocyte activating factor (LAF) assay. This suggests that sequential events lead to thymocyte activation. The responsiveness is three to five fold greater than, and the total time of assay is the same as that of the LAF assay. Interestingly, pre-incubation with IL-2 renders thymocytes more sensitive than responsive to crude monocyte conditioned media. The use of the MTT colorimetric method for the assessment of thymocyte proliferation, and of the lectin jacalin as a co-mitogen are suggested as alternatives to be used in co-stimulatory assays.
Resumo:
The influence of the subminimal inhibitory concentrations (1/3 and 1/4 of the MIC) of penicillin on growth rate and on haemolysin production of a strain of group G Streptococcus was studied. It was shown that 1/3 of the MIC almost completely inhibited the bacterial growth, but it was not able to inhibit haemolysin activity in the culture supernate. The generation time of bacteria grown in 1/4 of the MIC was approximately twice longer than that of the control culture. In all cultures, the haemolysin, after being produced (or liberated), reached a peak and decreased to low levels, which could suggest that group G Streptococcus produces some end products of metabolism that are able to inhibit haemolysin activity.
Resumo:
The human estrogen receptor (hER) is a trans-acting regulatory protein composed of a series of discrete functional domains. We have microinjected an hER expression vector (HEO) into Xenopus oocyte nuclei and demonstrate, using Western blot assay, that the hER is synthesized. When nuclear extracts from oocytes were prepared and incubated in the presence of a 2.7 kb DNA fragment comprising the 5' end of the vitellogenin gene B2, formation of estrogen-dependent complexes could be visualized by electron microscopy over the estrogen responsive element (ERE). Of crucial importance is the observation that the complex formation is inhibited by the estrogen antagonist tamoxifen, is restored by the addition of the hormone and does not take place with extracts from control oocytes injected with the expression vector lacking the sequences encoding the receptor. The presence of the biologically active hER is confirmed in co-injection experiments, in which HEO is co-introduced with a CAT reporter gene under the control of a vitellogenin promoter containing or lacking the ERE. CAT assays and primer extensions analyses reveal that both the receptor and the ERE are essential for estrogen induced stimulation of transcription. The same approach was used to analyze selective hER mutants. We find that the DNA binding domain (region C) is essential for protein--DNA complex formation at the ERE but is not sufficient by itself to activate transcription from the reporter gene. In addition to region C, both the hormone binding (region E) and amino terminal (region A/B) domains are needed for an efficient transcription activation.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species.
Resumo:
Background: The transcription factor IRF4 is involved in several T-cell-dependent chronic inflammatory diseases. To elucidate the mechanisms for pathological cytokine production in colitis, we addressed the role of the IRF transcription factors in human inflammatory bowel disease (IBD) and experimental colitis.Methods: IRF levels and cytokine production in IBD patients were studied as well as the effects of IRF4 deficiency in experimental colitis.Results: In contrast to IRF1, IRF5, and IRF8, IRF4 expression in IBD was augmented in the presence of active inflammation. Furthermore, IRF4 levels significantly correlated with IL-6 and IL-17 mRNA expression and to a lesser extent with IL-22 mRNA expression in IBD. To further explore the role of IRF4 under in vivo conditions, we studied IRF4-deficient and wildtype mice in experimental colitis. In contrast to DSS colitis, IRF4 deficiency was protective in T-cell-dependent transfer colitis associated with reduced ROR alpha/gamma t levels and impaired IL-6, IL-17a, and IL-22 production, suggesting that IRF4 acts as a master regulator of mucosal Th17 cell differentiation. Subsequent mechanistic studies using database analysis, chromatin immunoprecipitation, and electrophoretic mobility shift assays identified a novel IRF4 binding site in the IL-17 gene promoter. Overexpression of IRF4 using retroviral infection induced IL-17 production and IL-17 together with IL-6 induced ROR gamma t expression.Conclusions: IRF4 can directly bind to the IL-17 promotor and induces mucosal ROR gamma t levels and IL-17 gene expression thereby controlling Th17-dependent colitis. Targeting of this molecular mechanism may lead to novel therapeutic approaches in human IBD.
Resumo:
The schistosomicidal activity of a new series of alkylaminooctanethiosulfuric acids was studied in white Swiss mice infected with the L.E. strain of Schistosoma mansoni (Belo Horizonte, MG, Brazil). In a preliminary screening of six compounds, two derivatives - 2-[(1-methylpropyl)amino]-1-octanethiosulfuric acid and 2-[(1-methylethyl)-amino]-1-octanethiosulfuric acid - given orally in doses of 300 mg/kg/day for five consecutive days, caused interruption of the oviposition and the hepatic shift of more than 90 of the worms. Both compounds caused a significant reduction in worm burden and, interestingly, the female schistosomes were more susceptible. With the therapeutic schedule of two doses of 800 mg/kg over a 20 day interval, the death of almost all the females and about 50 of the males was observed. Female worms recovered from treated mice showed scattered vitteline glands. Results of in vitro experiments against different developmental stages of the parasite revealed the induction of paralysis and damage to the tegument membrane. The drugs presented no toxic effects on the animals.