993 resultados para Deep-sea mining


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using the coupled climate model CLIMBER-3α, we investigate changes in sea surface elevation due to a weakening of the thermohaline circulation (THC). In addition to a global sea level rise due to a warming of the deep sea, this leads to a regional dynamic sea level change which follows quasi-instantaneously any change in the ocean circulation. We show that the magnitude of this dynamic effect can locally reach up to ~1m, depending on the initial THC strength. In some regions the rate of change can be up to 20-25 mm/yr. The emerging patterns are discussed with respect to the oceanic circulation changes. Most prominent is a south-north gradient reflecting the changes in geostrophic surface currents. Our results suggest that an analysis of observed sea level change patterns could be useful for monitoring the THC strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Contour map of the Caribbean Sea 1885, prepared from data furnished by the U.S. Hydrographic Office, based on the deep-sea soundings of the U.S.C.S.Str. Blake and the U.S.F.Str. Albatross. It was published by the Museum of Comparative Zoology, 1894. Scale [ca. 1:7,300,000]. Covers the Caribbean Sea. The image inside the map neatline is georeferenced to the surface of the earth and fit to a non-standard 'World Polyconic' projection with the central meridian at 75 degrees west. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, islands, shoreline features, and more. Relief shown by hachures. Depths shown by isolines and soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection and the Harvard University Library as part of the Open Collections Program at Harvard University project: Organizing Our World: Sponsored Exploration and Scientific Discovery in the Modern Age. Maps selected for the project correspond to various expeditions and represent a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two quadrupole splitting doublets with delta E_q = 0.74 and 1.62 mm/s were found in the montmorillonite spectra. The more intense doublet corresponds to iron in a somewhat distorted tetrahedral coordination, while the less intense corresponds to quadri-coordinated iron. The EPR spectrum also exhibits two lines with a q-factor of 3 and 4.3, which corresponds to transformed minerals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Significant variations in the isotopic composition of marine calcium have occurred over the last 80 million years. These variations reflect deviations in the balance between inputs of calcium to the ocean from weathering and outputs due to carbonate sedimentation, processes that are important in controlling the concentration of carbon dioxide in the atmosphere and, hence, global climate. The calcium isotopic ratio of paleo-seawater is an indicator of past changes in atmospheric carbon dioxide when coupled with determinations of paleo-pH.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During four expeditions with RV "Polarstern" at the continental margin of the southern Weddell Sea, profiling and geological sampling were carried out. A detailed bathymetric map was constructed from echo-sounding data. Sub-bottom profiles, classified into nine echotypes, have been mapped and interpreted. Sedimentological analyses were carried out on 32 undisturbed box grab surface samples, as well as on sediment cores from 9 sites. Apart from the description of the sediments and the investigation of sedimentary structures on X-radiographs the following characteristics were determined: grain-size distributions; carbonate and Corg content; component distibutions in different grain-size fractions; stable oxygen and carbon isotopes in planktic and, partly, in benthic foraminifers; and physical properties. The stratigraphy is based On 14C-dating, oxygen isotope Stages and, at one site, On paleomagnetic measurements and 230Th-analyses The sediments represent the period of deposition from the last glacial maximum until recent time. They are composed predominantly of terrigenous components. The formation of the sediments was controlled by glaciological, hydrographical and gravitational processes. Variations in the sea-ice coverage influenced biogenic production. The ice sheet and icebergs were important media for sediment transport; their grounding caused compaction and erosion of glacial marine sediments on the outer continental shelf. The circulation and the physical and chemical properties of the water masses controlled the transport of fine-grained material, biogenic production and its preservation. Gravitational transport processes were the inain mode of sediment movements on the continental slope. The continental ice sheet advanced to the shelf edge and grounded On the sea-floor, presumably later than 31,000 y.B.P. This ice movement was linked with erosion of shelf sediments and a very high sediment supply to the upper continental slope from the adiacent southern shelf. The erosional surface On the shelf is documented in the sub-bottom profiles as a regular, acoustically hard reflector. Dense sea-ice coverage above the lower and middle continental slope resulted in the almost total breakdown of biogenic production. Immediately in front of the ice sheet, above the upper continental slope, a <50 km broad coastal polynya existed at least periodically. Biogenic production was much higher in this polynya than elsewhere. Intense sea-ice formation in the polynya probably led to the development of a high salinity and, consequently, dense water mass, which flowed as a stream near bottom across the continental slope into the deep sea, possibly contributing to bottom water formation. The current velocities of this water mass presumably had seasonal variations. The near-bottom flow of the dense water mass, in combination with the gravity transport processes that arose from the high rates of sediment accumulation, probably led to erosion that progressed laterally from east to West along a SW to NE-trending, 200 to 400 m high morphological step at the continental slope. During the period 14,000 to 13,000 y.B.P., during the postglacial temperature and sea-level rise, intense changes in the environmental conditions occured. Primarily, the ice masses on the outer continental shelf started to float. Intense calving processes resulted in a rapid retreat of the ice edge to the south. A consequence of this retreat was, that the source area of the ice-rafted debris changed from the adjacent southern shelf to the eastern Weddell Sea. As the ice retreated, the gravitational transport processes On the continental slope ceased. Soon after the beginning of the ice retreat, the sea-ice coverage in the whole research area decreased. Simultaneously, the formation of the high salinity dense bottom water ceased, and the sediment composition at the continental slope then became influenced by the water masses of the Weddell Gyre. The formation of very cold Ice Shelf Water (ISW) started beneath the southward retreating Filchner-Ronne Ice Shelf somewhat later than 12,000 y.B.P. The ISW streamed primarily with lower velocities than those of today across the continental slope, and was conducted along the erosional step on the slope into the deep sea. At 7,500 y.B.P., the grounding line of the ice masses had retreated > 400 km to the south. A progressive retreat by additional 200 to 300 km probably led to the development of an Open water column beneath the ice south of Berkner Island at about 4,000 y.B.P. This in turn may have led to an additional ISW, which had formed beneath the Ronne Ice Shelf, to flow towards the Filcher Ice Shelf. As a result, increased flow of ISW took place over the continental margin, possibly enabling the ISW to spill over the erosional step On the upper continental slope towards the West. Since that time, there is no longer any documentation of the ISW in the sedimentary Parameters on the lower continental slope. There, recent sediments reflect the lower water masses of the Weddell Gyre. The sea-ice coverage in early Holocene time was again so dense that biogenic production was significantly restricted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sediment samples from the Laptev Sea, taken during the 1993 RV Polarstern expedition ARK IX/4 and the RV Ivan Kireyev expedition TRANSDRIFT I, were investigated for the amount and composition of their organic carbon fractions. Of major interest was the identification of different processes controlling organic carbon deposition (i.e. terrigenous supply vs. surface water productivity). Long-chain unsaturated alkenones derived from prymnesiophytes, and fatty acids derived from diatoms and dinoflagellates, were analysed by means of gas chromatography and mass spectrometry. First results on the distribution of these biomarkers in surface sediments indicate that the surface water productivity signal is well preserved in the sediment data. This is shown by the distribution of the 16:1(n-7) and 20:5(n-3) fatty acids indicative for diatoms, and the excellent correlation with the chlorophyll a concentrations in the surface water masses and the biogenic-opal content and increased hydrogen indices of the sediments. The high concentration of these unsaturated fatty acids in shallow water sediments shows the recent deposition of the organic material. In deep-sea sediments, on the other hand, the concentrations are low. This decreased content is typical for phytoplankton material which has been degraded by microorganisms or autoxidation. In general, the alkenone concentrations are very low, suggesting low production rates by prymnesiophytes. Only at one station from the lower continental margin influenced by the inflow of Atlantic water masses, were some higher amounts of alkenones determined. Long-chain n-alkanes as well as high C/N ratios and low hydrogen indices indicate the importance of (fluvial) supply of terrigenous organic matter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Uniquely in the Southern Hemisphere the New Zealand micro-continent spans the interface between a subtropical gyre and the Subantarctic Circumpolar Current. Its 20° latitudinal extent includes a complex of submerged plateaux, ridges, saddles and basins which, in the present interglacial, are partial barriers to circulation and steer the Subtropical (STF) and Subantarctic (SAF) fronts. This configuration offers a singular opportunity to assess the influence of bottom topography on oceanic circulation through Pleistocene glacial - interglacial (G/I) cycles, its effect on the location and strength of the fronts, and its ability to generate significant differences in mixed layer thermal history over short distances. For this study we use new planktic foraminiferal based sea-surface temperature (SST) estimates spanning the past 1 million years from a latitudinal transect of four deep ocean drilling sites. We conclude that: 1. the effect of the New Zealand landmass was to deflect the water masses south around the bathymetric impediments; 2. the effect of a shallow submerged ridge on the down-current side (Chatham Rise), was to dynamically trap the STF along its crest, in stark contrast to the usual glacial-interglacial (G-I) meridional migration that occurs in the open ocean; 3. the effect of more deeply submerged, downstream plateaux (Campbell, Bounty) was to dynamically trap the SAF along its steep southeastern margin; 4. the effects of saddles across the submarine plateaux was to facilitate the development of jets of subtropical and subantarctic surface water through the fronts, forming localized downstream gyres or eddies during different phases in the G-I climate cycles; 5. the deep Pukaki Saddle across the Campbell-Bounty Plateaux guided a branch of the SAF to flow northwards during each glacial, to form a strong gyre of circumpolar surface water in the Bounty Trough, especially during the mid-Pleistocene Climate Transition (MIS 22-16) when exceptionally high SST gradients existed across the STF; 6. the shallower Mernoo Saddle, at the western end of the Chatham Rise, provided a conduit for subtropical water to jet southwards across the STF in the warmest interglacial peaks (MIS 11, 5.5) and for subantarctic water to flow northwards during glacials; 7. although subtropical or subantarctic drivers can prevail at a particular phase of a G-I cycles, it appears that the Antarctic Circumpolar Current is the main influence on the regional hydrography. Thus complex submarine topography can affect distinct differences in the climate records over short distances with implications for using such records in interpreting global or regional trends. Conversely, the local topography can amplify the paleoclimate record in different ways in different places, thus enhancing its value for the study of more minor paleoceanographic influences that elsewhere are more difficult to detect. Such sites include DSDP 594, which like some other Southern Ocean sites, has the typical late Pleistocene asymmetrical saw-tooth G-I climate pattern transformed to a gap-tooth pattern of quasi-symmetrical interglacial spikes that interrupt extended periods of minimum glacial temperatures.

Relevância:

90.00% 90.00%

Publicador: