989 resultados para Decision supports
Resumo:
Book Review: Emerson, Peter, Defining Democracy: Voting Procedures in Decision-making, Elections and
Governance (2nd edn), Springer, London, 2012,
Resumo:
We consider a normal form game in which there is a single exogenously given coalition of cooperating players that can write a binding agreement on pre-selected actions. These collective actions typically represent a certain number of dimensions in the players’ strategy space. The actions represented by the other dimensions of the strategy space remain under the complete, individual control of the players.
We consider a standard extension of the Nash equilibrium concept denoted as a partial cooperative equilibrium as well as an equilibrium concept in which the coalition of cooperators has a leadership position. Existence results are developed for these new equilibrium concepts. We identify conditions on these partial cooperative games under which the various equilibrium concepts are equivalent.
We apply this game theoretic framework to existing models of multi-market oligopolies and international pollution abatement. In a multi-market oligopoly typically a merger paradox emerges in the partial cooperative equilibrium, which vanishes if the cartel of collaborators exploits its leadership position. Our application to international pollution abatement treaties shows that cooperation by a sufficiently large group of countries results in a Pareto improvement over the standard tragedy of the commons outcome described by the Nash equilibrium.
Resumo:
Innate immunity represents the first line of defence against invading pathogens. It consists of an initial inflammatory response that recruits white blood cells to the site of infection in an effort to destroy and eliminate the pathogen. Some pathogens replicate within host cells, and cell death by apoptosis is an important effector mechanism to remove the replication niche for such microbes. However, some microbes have evolved evasive strategies to block apoptosis, and in these cases host cells may employ further countermeasures, including an inflammatory form of cell death know as necroptosis. This review aims to highlight the importance of the RIP kinase family in controlling these various defence strategies. RIP1 is initially discussed as a key component of death receptor signalling and in the context of dictating whether a cell triggers a pathway of pro-inflammatory gene expression or cell death by apoptosis. The molecular and functional interplay of RIP1 and RIP3 is described, especially with respect to mediating necroptosis and as key mediators of inflammation. The function of RIP2, with particular emphasis on its role in NOD signalling, is also explored. Special attention is given to emphasizing the physiological and pathophysiological contexts for these various functions of RIP kinases.
Resumo:
Prostate cancer is the second most common cause of cancer-associated deaths in men and signalling via a transcription factor called androgen receptor (AR) is an important driver of the disease. Androgen treatment is known to affect the expression and activity of other oncogenes including receptor tyrosine kinases (RTKs). In this study we report that AR-positive prostate cancer cell-lines express 50% higher levels of enzymes in the hexosamine biosynthesis pathway (HBP) than AR-negative prostate cell-lines. HBP produces hexosamines that are used by endoplasmic reticulum and golgi enzymes to glycosylate proteins targeted to plasma-membrane and secretion. Inhibition of O-linked glycosylation by ST045849 or N-linked glycosylation with tunicamycin decreased cell viability by 20%. In addition, tunicamycin inhibited the androgen-induced expression of AR target genes KLK3 and CaMKK2 by 50%. RTKs have been shown to enhance AR activity and we used an antibody array to identify changes in the phosphorylation status of RTKs in response to androgen stimulation. Hormone treatment increased the activity of Insulin like Growth Factor 1-Receptor (IGF-1R) ten-fold and this was associated with a concomitant increase in the N-linked glycosylation of the receptor, analyzed by lectin enrichment experiments. Glycosylation is known to be important for the processing and stability of RTKs. Inhibition of N-linked glycosylation resulted in accumulation of IGF-1R pro-receptor with altered mobility as shown by immunoprecipitation. Confocal imaging revealed that androgen induced plasma-membrane localization of IGF-1R was blocked by tunicamycin. In conclusion we have established that the glycosylation of IGF-1R is necessary for the full activation of the receptor in response to androgen treatment and that perturbing this process can break the feedback loop between AR and IGF-1R activation in prostate cells. Achieving similar results selectively in a clinical setting will be an important challenge in the future.
Resumo:
BACKGROUND: Prostate cancer (PCa) is a clinically and pathologically heterogeneous disease. The rapid development of sequencing technology has the potential to deliver new biomarkers with emphasis on aggressive disease and to revolutionise personalised cancer treatment. However, a prostate harbouring cancer commonly contains multiple separate tumour foci, with the potential to aggravate tumour sampling. The level of intraprostatic tumour heterogeneity remains to be determined.
OBJECTIVE: To determine the level of intraprostatic tumour heterogeneity through genome-wide, high-resolution profiling of multiple tumour samples from the same individual.
DESIGN, SETTINGS, AND PARTICIPANTS: Multiple tumour samples were obtained from four individuals following radical prostatectomy. One individual (SWE-1) contained >70% cancer cells in all tumour samples, whereas the other three (SWE-2 to SWE-4) required the use of laser capture microdissection for tumour cell enrichment. Subsequently, DNA was extracted from all tissue samples, and exome sequencing was performed. All tumour foci of SWE-1 were also profiled using a high-resolution array for the identification of copy number alterations (CNA).
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Shared somatic high-frequency single nucleotide variants (SNV) and CNAs were used to infer the level of intraprostatic tumour heterogeneity.
RESULTS AND LIMITATIONS: No high-frequency mutations, common for the three tumour samples of SWE-1, were identified. Ten randomly chosen positions were validated with Sanger sequencing in all foci, which verified the exome data. The high level of intraprostatic heterogeneity was consistent in all individuals. In total, three out of four individuals harboured tumours without an apparent common somatic denominator. Although we cannot exclude the presence of common structural rearrangements, a high-density array was used for the detection of deletions and amplifications in SWE-1, which agreed with the exome data.
CONCLUSIONS: We present evidence for the presence of somatically independent tumours within the same prostate. This finding will have implications for personalised cancer treatment and biomarker discovery.
Resumo:
This paper examines issues of capacity, delivery and quality in relation to the Planning Bill. It is one of four papers and follows a common format highlighting the key issues arising in the Bill; summarising the findings of the public consultation and the Government’s response; reviewing comparable arrangements in comparable jurisdictions and highlighting potential contentious issues.
Resumo:
Purpose: As resident work hours policies evolve, residents’ off-duty time remains poorly understood. Despite assumptions about how residents should be using their postcall, off-duty time, there is little research on how residents actually use this time and the reasoning underpinning their activities. This study sought to understand residents’ nonclinical postcall activities when they leave the hospital, their decision-making processes, and their perspectives on the relationship between these activities and their well-being or recovery.
Method: The study took place at a Liaison Committee on Medical Education–accredited Canadian medical school from 2012 to 2014. The authors recruited a purposive and convenience sample of postgraduate year 1–5 residents from six surgical and nonsurgical specialties at three hospitals affiliated with the medical school. Using a constructivist grounded theory approach, semistructured interviews were conducted, audio-taped, transcribed, anonymized, and combined with field notes. The authors analyzed interview transcripts using constant comparative analysis and performed post hoc member checking.
Results: Twenty-four residents participated. Residents characterized their predominant approach to postcall decision making as one of making trade-offs between multiple, competing, seemingly incompatible, but equally valuable, activities. Participants exhibited two different trade-off orientations: being oriented toward maintaining a normal life or toward mitigating fatigue.
Conclusions: The authors’ findings on residents’ trade-off orientations suggest a dual recovery model with postcall trade-offs motivated by the recovery of sleep or of self. This model challenges the dominant viewpoint in the current duty hours literature and suggests that the duty hours discussion must be broadened to include other recovery processes.
Resumo:
The advent of novel genomic technologies that enable the evaluation of genomic alterations on a genome-wide scale has significantly altered the field of genomic marker research in solid tumors. Researchers have moved away from the traditional model of identifying a particular genomic alteration and evaluating the association between this finding and a clinical outcome measure to a new approach involving the identification and measurement of multiple genomic markers simultaneously within clinical studies. This in turn has presented additional challenges in considering the use of genomic markers in oncology, such as clinical study design, reproducibility and interpretation and reporting of results. This Review will explore these challenges, focusing on microarray-based gene-expression profiling, and highlights some common failings in study design that have impacted on the use of putative genomic markers in the clinic. Despite these rapid technological advances there is still a paucity of genomic markers in routine clinical use at present. A rational and focused approach to the evaluation and validation of genomic markers is needed, whereby analytically validated markers are investigated in clinical studies that are adequately powered and have pre-defined patient populations and study endpoints. Furthermore, novel adaptive clinical trial designs, incorporating putative genomic markers into prospective clinical trials, will enable the evaluation of these markers in a rigorous and timely fashion. Such approaches have the potential to facilitate the implementation of such markers into routine clinical practice and consequently enable the rational and tailored use of cancer therapies for individual patients. © 2010 Macmillan Publishers Limited. All rights reserved.