903 resultados para Data-driven knowledge acquisition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Letras, Departamento de Línguas Estrangeiras e Tradução, Programa de Pós-Graduação em Estudos da Tradução, 2016.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to monitor fetal heart rate is vital during late pregnancy and labor in order to evaluate fetal well-being. Current monitoring practice is essentially based on external cardiotocography and, less frequently, during labor, invasive fetal scalp electrocardiography. Many current and envisaged applications could benefi t from simpler devices using a 3-lead ECG confi guration. We are designing a maternity support belt with an embedded wireless 3-lead ECG sensor, and have investigated the infl uence of the ground electrode position on signal quality. Data from over 100 pregnant women was collected with the ground electrode placed in 3 locations in order to determine optimum electrode placement and belt form factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a wireless EEG acquisition platform based on Open Multimedia Architecture Platform (OMAP) embedded system. A high-impedance active dry electrode was tested for improving the scalp- electrode interface. It was used the sigma-delta ADS1298 analog-to-digital converter, and developed a “kernelspace” character driver to manage the communications between the converter unit and the OMAP’s ARM core. The acquired EEG signal data is processed by a “userspace” application, which accesses the driver’s memory, saves the data to a SD-card and transmits them through a wireless TCP/IP-socket to a PC. The electrodes were tested through the alpha wave replacement phenomenon. The experimental results presented the expected alpha rhythm (8-13 Hz) reactiveness to the eyes opening task. The driver spends about 725 μs to acquire and store the data samples. The application takes about 244 μs to get the data from the driver and 1.4 ms to save it in the SD-card. A WiFi throughput of 12.8Mbps was measured which results in a transmission time of 5 ms for 512 kb of data. The embedded system consumes about 200 mAh when wireless off and 400 mAh when it is on. The system exhibits a reliable performance to record EEG signals and transmit them wirelessly. Besides the microcontroller-based architectures, the proposed platform demonstrates that powerful ARM processors running embedded operating systems can be programmed with real-time constrains at the kernel level in order to control hardware, while maintaining their parallel processing abilities in high level software applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, information overload and the lack of systems that enable locating employees with the right knowledge or skills are common challenges that large organisations face. This makes knowledge workers to re-invent the wheel and have problems to retrieve information from both internal and external resources. In addition, information is dynamically changing and ownership of data is moving from corporations to the individuals. However, there is a set of web based tools that may cause a major progress in the way people collaborate and share their knowledge. This article aims to analyse the impact of ‘Web 2.0’ on organisational knowledge strategies. A comprehensive literature review was done to present the academic background followed by a review of current ‘Web 2.0’ technologies and assessment of their strengths and weaknesses. As the framework of this study is oriented to business applications, the characteristics of the involved segments and tools were reviewed from an organisational point of view. Moreover, the ‘Enterprise 2.0’ paradigm does not only imply tools but also changes the way people collaborate, the way the work is done (processes) and finally impacts on other technologies. Finally, gaps in the literature in this area are outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 27 December 1722 Algarve earthquake destroyed a large area in southern Portugal generating a local tsunami that inundated the shallow areas of Tavira. It is unclear whether its source was located onshore or offshore and, in any case, what was the tectonic source responsible for the event. We analyze available historical information concerning macroseismicity and the tsunami to discuss the most probable location of the source. We also review available seismotectonic knowledge of the offshore region close to the probable epicenter, selecting a set of four candidate sources. We simulate tsunamis produced by these candidate sources assuming that the sea bottom displacement is caused by a compressive dislocation over a rectangular fault, as given by the half-space homogeneous elastic approach, and we use numerical modeling to study wave propagation and run-up. We conclude that the 27 December 1722 Tavira earthquake and tsunami was probably generated offshore, close to 37 degrees 01'N, 7 degrees 49'W.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Communities of Practice are places which provide a sound basis for organizational learning, enabling knowledge creation and acquisition thus improving organizational performance, leveraging innovation and consequently increasing competitively. Virtual Communities of Practice (VCoP‟s) can perform a central role in promoting communication and collaboration between members who are dispersed in both time and space. The ongoing case study, described here, aims to identify both the motivations and the constraints that members of an organization experience when taking part in the knowledge creating processes of the VCoP‟s to which they belong. Based on a literature review, we have identified several factors that influence such processes; they will be used to analyse the results of interviews carried out with the leaders of VCoP‟s in four multinationals. As future work, a questionnaire will be developed and administered to the other members of these VCoP‟s

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With accelerated market volatility, faster response times and increased globalization, business environments are going through a major transformation and firms have intensified their search for strategies which can give them competitive advantage. This requires that companies continuously innovate, to think of new ideas that can be transformed or implemented as products, processes or services, generating value for the firm. Innovative solutions and processes are usually developed by a group of people, working together. A grouping of people that share and create new knowledge can be considered as a Community of Practice (CoP). CoP’s are places which provide a sound basis for organizational learning and encourage knowledge creation and acquisition. Virtual Communities of Practice (VCoP's) can perform a central role in promoting communication and collaboration between members who are dispersed in both time and space. Nevertheless, it is known that not all CoP's and VCoP's share the same levels of performance or produce the same results. This means that there are factors that enable or constrain the process of knowledge creation. With this in mind, we developed a case study in order to identify both the motivations and the constraints that members of an organization experience when taking part in the knowledge creating processes of VCoP's. Results show that organizational culture and professional and personal development play an important role in these processes. No interviewee referred to direct financial rewards as a motivation factor for participation in VCoPs. Most identified the difficulty in aligning objectives established by the management with justification for the time spent in the VCoP. The interviewees also said that technology is not a constraint.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) discipline. Over the last years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining (DM) field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. Therefore, a lack of an effective usage of DM in BI can be found in some BI systems. An architecture that pretends to conduct to an effective usage of DM in BI is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

7th Mediterranean Conference on Information Systems, MCIS 2012, Guimaraes, Portugal, September 8-10, 2012, Proceedings Series: Lecture Notes in Business Information Processing, Vol. 129

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes a methodology to extract symbolic rules from trained neural networks. In our approach, patterns on the network are codified using formulas on a Lukasiewicz logic. For this we take advantage of the fact that every connective in this multi-valued logic can be evaluated by a neuron in an artificial network having, by activation function the identity truncated to zero and one. This fact simplifies symbolic rule extraction and allows the easy injection of formulas into a network architecture. We trained this type of neural network using a back-propagation algorithm based on Levenderg-Marquardt algorithm, where in each learning iteration, we restricted the knowledge dissemination in the network structure. This makes the descriptive power of produced neural networks similar to the descriptive power of Lukasiewicz logic language, minimizing the information loss on the translation between connectionist and symbolic structures. To avoid redundance on the generated network, the method simplifies them in a pruning phase, using the "Optimal Brain Surgeon" algorithm. We tested this method on the task of finding the formula used on the generation of a given truth table. For real data tests, we selected the Mushrooms data set, available on the UCI Machine Learning Repository.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presently power system operation produces huge volumes of data that is still treated in a very limited way. Knowledge discovery and machine learning can make use of these data resulting in relevant knowledge with very positive impact. In the context of competitive electricity markets these data is of even higher value making clear the trend to make data mining techniques application in power systems more relevant. This paper presents two cases based on real data, showing the importance of the use of data mining for supporting demand response and for supporting player strategic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives : The purpose of this article is to find out differences between surveys using paper and online questionnaires. The author has deep knowledge in the case of questions concerning opinions in the development of survey based research, e.g. the limits of postal and online questionnaires. Methods : In the physician studies carried out in 1995 (doctors graduated in 1982-1991), 2000 (doctors graduated in 1982-1996), 2005 (doctors graduated in 1982-2001), 2011 (doctors graduated in 1977-2006) and 457 family doctors in 2000, were used paper and online questionnaires. The response rates were 64%, 68%, 64%, 49% and 73%, respectively. Results : The results of the physician studies showed that there were differences between methods. These differences were connected with using paper-based questionnaire and online questionnaire and response rate. The online-based survey gave a lower response rate than the postal survey. The major advantages of online survey were short response time; very low financial resource needs and data were directly loaded in the data analysis software, thus saved time and resources associated with the data entry process. Conclusions : The current article helps researchers with planning the study design and choosing of the right data collection method.