983 resultados para Dark matter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear dynamics of longitudinal dust lattice waves propagating in a dusty plasma bi-crystal is investigated. A “diatomic”-like one-dimensional dust lattice configuration is considered, consisting of two distinct dust grain species with different charges and masses. Two different frequency dispersion modes are obtained in the linear limit, namely, an optical and an acoustic wave dispersion branch. Nonlinear solitary wave solutions are shown to exist in both branches, by considering the continuum limit for lattice excitations in different nonlinear potential regimes. For this purpose, a generalized Boussinesq and an extended Korteweg de Vries equation is derived, for the acoustic mode excitations, and their exact soliton solutions are provided and compared. For the optic mode, a nonlinear Schrödinger-type equation is obtained, which is shown to possess bright- (dark-) type envelope soliton solutions in the long (short, respectively) wavelength range. Optic-type longitudinal wavepackets are shown to be generally unstable in the continuum limit, though this is shown not to be the rule in the general (discrete) case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of laser-accelerated protons as a particle probe for the detection of electric fields in plasmas has led in recent years to a wealth of novel information regarding the ultrafast plasma dynamics following high intensity laser-matter interactions. The high spatial quality and short duration of these beams have been essential to this purpose. We will discuss some of the most recent results obtained with this diagnostic at the Rutherford Appleton Laboratory (UK) and at LULI - Ecole Polytechnique (France), also applied to conditions of interest to conventional Inertial Confinement Fusion. In particular, the technique has been used to measure electric fields responsible for proton acceleration from solid targets irradiated with ps pulses, magnetic fields formed by ns pulse irradiation of solid targets, and electric fields associated with the ponderomotive channelling of ps laser pulses in under-dense plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetry (TG) can be used for assessing the compositional differences in grasses that relate to dry matter digestibility (DMD) determined by pepsin-cellulase assay. This investigation developed regression models for predicting DMD of herbage grass during one growing season using TG results. The calibration samples were obtained from a field trial of eight cultivars and two breeding lines. The harvested materials from five cuts were analysed by TG to identify differences in the combustion patterns within the range of 30-600 degrees C. The discrete results including weight loss, peak height, area, temperature, widths and residue of three decomposition peaks were regressed against the measured DMD values of the calibration samples. Similarly, continuous weight loss results of the same samples were also utilised to generate DMD models. The r(2) for validation of the discrete and the best continuous models were 0.90 and 0.95, respectively, and the two calibrations were validated using independent samples from 24 plots from a trial carried out in 2004. The standard error for prediction of the 24 samples by the discrete model (4.14%) was higher than that by the continuous model (2.98%). This study has shown that DMD of grass could be predicted from the TG results. The benefit of thermal analysis is the ability to detect and show changes in composition of cell wall fractions of grasses during different cuts in a year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH2CHCNH+, have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at~2meV relative kinetic energy about 50% of the DR events involve only ruptures of X–H bonds (where X=C or N)while the rest leads to the production of a pair of fragments each containing two heavy atoms (alongside H and/or H2). The absolute DR cross section has been investigated for relative kinetic energies ranging from ~1 meV to 1 eV. The thermal rate coefficient has been determined to follow the expression k(T) = 1.78 × 10-6 (T/300)-0.80 cm3 s-1 for electron temperatures ranging from ~10 to 1000 K. Gas-phase models of the nitrile chemistry in the dark molecular cloud TMC-1 have been run and results are compared with observations. Also, implications of the present results for the nitrile chemistry of Titan’s upper atmosphere are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the role of molecular anion chemistry in pseudo-time-dependent chemical models of dark clouds. With oxygen-rich elemental abundances, the addition of anions results in a slight improvement in the overall agreement between model results and observations of molecular abundances in Taurus molecular cloud 1 (TMC-1 (CP)). More importantly, with the inclusion of anions, we see an enhanced production efficiency of unsaturated carbon-chain neutral molecules, especially in the longer members of the families C(n)H, C(n)H(2), and HC(n)N. The use of carbon-rich elemental abundances in models of TMC-1 (CP) with anion chemistry worsens the agreement with observations compared with model results obtained in the absence of anions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the results of models of dark cloud chemistry incorporating a depth dependent density distribution with diffusive mixing and adsorption onto grains. The model is based on the approach taken by Xie et al. (1995), with the addition of grain accretion effects. Without diffusion, the central regions of the cloud freeze out in less than 10(7) years. Freeze-out time is dependent on density, so the diffuse outer region of the cloud remains abundant in gas for about an order of magnitude longer. We find that fairly small amounts of diffusive mixing can delay freeze-out at the centre of the model cloud for a time up to an order of magnitude greater than without diffusion, due to material diffusing inward from the edges of the cloud. The gas-phase lifetime of the cloud core can thus be increased by up to an order of magnitude or more by this process. We have run three different grain models with various diffusion coefficients to investigate the effects of changing the sticking parameters.