904 resultados para Danse noble


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Temporomandibular Joint is a noble structure of the complex mandibular, a lot of research was conducted on the to signs and symptoms of the alterations that attack those structures. ln spite of the high incidence of the DTM in children, there's little knowledge about it, wich makes difficult the treatment Desorders Craniomandibulares (DCM) or Desorders Temporomandibulars (DTM). The Temporomandibular Joint is composed basically by three elements: bones, muscles and disk, in relation to bony part, we have the fossae mandibular that is part of the temporary bone and wich houses the condyle mandibular, accomplishing the articulation among the cranium and the jaw (it leaves piece of furniture of the articulation). Our intention in that work was of verifying a possible asymmetry of the fossae mandibular on the left side and of the right side in relation to two straight line: a straight line that coincided with the plane medium sagittal and another perpendicular straight line to the plan medium sagittal. Analyzing, the fossae mandibular in 91 dry craniums of children, with age varying between four months of life intrauterina and five years, in x-rays in that the incidence was cranium-flow, we could end that: in spite of we find statistical significance in relation to that asymmetry, clinic cannot affirm that interferences on occlusion exists for that asymmetry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ornaments have always been appreciated by human. And today is obviously the need to include the concepts of ecology in all areas. In this scenario ecodesign becomes a great ally for professionals who work in the making of ornaments, including jewelers. Aiming to decrease and the preservation of noble metals and the use of alternative materials, the ecodesign of adornment makes even more valued and attractive, it promotes sustainable consumption. Based on these concepts, this paper aims to investigate the Brazilian professionals who use sustainable ideas for making your accessories and social work related to this activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years the environment and its effects on human life has been the subject of research. The scientific society organized to manage the problem of large amount of waste generated, discuss the degradation of the environment and point out possible solutions. The scarcity of references in the specific hemotherapy motivated this research. This study is an observational descriptive in order to raise the issue of hospital waste specific area of hemotherapy, presenting its latest ratings on Brazilian law also highlights the proposed Waste Management Program Health Service (PGRSS) Blood Center of Botucatu (HB) highlighting the importance of segregation of noble material in the generation of other therapeutic products using the technique of cleaner production (CP). The observational analysis of the reports shows a 20-fold increase in the amount of waste generated from 1993 to 2005, while the increase of manpower was 2.5 times. The increase in generation was due RSS hemocenter deployment of automated techniques, increased demand and improved sorting of waste. The technique implanted P + L in 2001 began using units of fresh frozen plasma, previously discarded after 12 months of storage, for the composition of new therapeutics for topical use, called bio dressing. In 10 years of implementation of this new technique, therapeutic products generated 535 patients benefited from micro-Botucatu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the investigation of the solvation properties of the minimal orientational model for water originally proposed by [Bell and Lavis, J. Phys. A 3, 568 (1970)]. The model presents two liquid phases separated by a critical line. The difference between the two phases is the presence of structure in the liquid of lower density, described through the orientational order of particles. We have considered the effect of a small concentration of inert solute on the solvent thermodynamic phases. Solute stabilizes the structure of solvent by the organization of solvent particles around solute particles at low temperatures. Thus, even at very high densities, the solution presents clusters of structured water particles surrounding solute inert particles, in a region in which pure solvent would be free of structure. Solute intercalates with solvent, a feature which has been suggested by experimental and atomistic simulation data. Examination of solute solubility has yielded a minimum in that property, which may be associated with the minimum found for noble gases. We have obtained a line of minimum solubility (TmS) across the phase diagram, accompanying the line of maximum density. This coincidence is easily explained for noninteracting solute and it is in agreement with earlier results in the literature. We give a simple argument which suggests that interacting solute would dislocate TmS to higher temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identifying new uses for residues of industries that process large quantities of biomass, as in bioethanol production, is essential for a sustainable development with reduced impact on the environment, which is the reason why many efforts have been devoted to find noble uses for lignins. in this study, a lignin obtained from sugarcane bagasse in a bioethanol producing plant was carboxymethylated to yield the water-soluble carboxymethyl lignin (CML), which was then used as stabilizing agent in aqueous alumina (Al2O3) suspensions. CML had a degree of substitution 0.46 +/- 0.01, in relation to the C9 unit of lignin, and behaved as a polyelectrolyte in a large pH range owing to the dissociation of carboxylic groups. The action of CML as stabilizing agent of alumina aqueous suspensions was investigated using viscometry, zeta potential, and photon correlation spectroscopy (PCS) measurements, mainly as a function of pH and time. Overall, the results showed that CML had a good performance as a deflocculating agent, because it led to dispersions with low viscosity and small change in particle size as a function of time. The positive effect from the addition of CML was confirmed in the morphological features of the material obtained from the alumina suspensions after elimination of water, as indicated by scanning electron microscopy. The stabilization of alumina suspensions afforded by CML opens the way for similar applications of modified lignins, whose electrical and structural properties may be tuned for specific uses in various industries, including the ceramic industry. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mixed-valence complex, [Fe(III)Fe(II)L1(mu-OAc)(2)]BF4 center dot H2O, where the ligand H(2)L1 = 2-{[[3-[((bis-(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl](pyridin-2-ylmethyl)amino]methyl]phenol}, has been studied with a range of techniques, and, where possible, its properties have been compared to those of the corresponding enzyme system purple acid phosphatase. The (FeFeII)-Fe-III and Fe-2(III) oxidized species were studied spectroelectrochemically. The temperature-dependent population of the S = 3/2 spin states of the heterovalent system, observed using magnetic circular dichroism, confirmed that the dinuclear center is weakly antiferromagnetically coupled (H = -2JS(1).S-2, where J = -5.6 cm(-1)) in a frozen solution. The ligand-to-metal charge-transfer transitions are correlated with density functional theory calculations. The (FeFeII)-Fe-III complex is electron paramagnetic resonance (EPR)-silent, except at very low temperatures (<2 K), because of the broadening caused by the exchange coupling and zero-field-splitting parameters being of comparable magnitude and rapid spin-lattice relaxation. However, a phosphate-bound Fe-2(III) complex showed an EPR spectrum due to population of the S-tot = 3 state (J= -3.5 cm(-1)). The phosphatase activity of the (FeFeII)-Fe-III complex in hydrolysis of bis(2,4-dinitrophenyl)phosphate (k(cat.) = 1.88 x 10(-3) s(-1); K-m = 4.63 x 10(-3) mol L-1) is similar to that of other bimetallic heterovalent complexes with the same ligand. Analysis of the kinetic data supports a mechanism where the initiating nucleophile in the phosphatase reaction is a hydroxide, terminally bound to Fe-III. It is interesting to note that aqueous solutions of [Fe(III)Fe(II)L1(mu-OAc)(2)](+) are also capable of protein cleavage, at mild temperature and pH conditions, thus further expanding the scope of this complex's catalytic promiscuity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ingestion of vegetables containing heavy metals is one of the main ways in which these elements enter the human body. Once entered, heavy metals are deposited in bone and fat tissues, overlapping noble minerals. Slowly released into the body, heavy metals can cause an array of diseases. This study aimed to investigate the concentrations of cadmium, nickel, lead, cobalt and chromium in the most frequently consumed foodstuff in the Sao Paulo State, Brazil and to compare the heavy metal contents with the permissible limits established by the Brazilian legislation. A value of intake of heavy metals in human diets was also calculated to estimate the risk to human health. Vegetable samples were collected at the Sao Paulo General Warehousing and Centers Company, and the heavy metal content was determined by atomic absorption spectrophotometry. All sampled vegetables presented average concentrations of Cd and Ni lower than the permissible limits established by the Brazilian legislation. Pb and Cr exceeded the limits in 44 % of the analyzed samples. The Brazilian legislation does not establish a permissible limit for Co contents. Regarding the consumption habit of the population in the Sao Paulo State, the daily ingestion of heavy metals was below the oral dose of reference, therefore, consumption of these vegetables can be considered safe and without risk to human health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The aim of this study was to compare the shear bond strength between Ni-Cr alloy specimens bonded to air-abraded Ni-Cr, bur-abraded Ni-Cr, etched ceramic and etched enamel substrates using the resin cements RelyX ARC or Enforce. Materials and methods: Ni-Cr specimens were made and sandblasted with Al2O3 airborne-particles. Disc-shaped patterns were made for each of the four experimental substrates: Ni-Cr treated with Al2O3 airborne-particles, Ni-Cr treated with diamond bur abrasion, etched enamel and etched ceramic. Results: Significant differences in shear bond strength were found between the different materials and luting agents evaluated. The Ni-Cr alloy cylinders bonded to Ni-Cr surfaces sandblasted with 50 lm Al2O3 particles and bonded with Enforce achieved the highest bond strength when compared with other substrates (28.9 MPa, p < 0.05). Bur-abraded metal discs had lowest values, regardless the cement used (2.9 and 6.9 MPa for RelyX and Enforce, respectively). Etched enamel and etched ceramic had similar shear bond strengths within cement groups and performed better when RelyX was used. Conclusions: Bonding Ni-Cr to Ni-Cr and ceramic may result in similar and higher bond strength when compared to Ni-Cr/enamel bonding. For metal/metal bonding, higher shear bond strength was achieved with resin cement Enforce, and for metal/ceramic and metal/enamel bonding, RelyX had higher results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoplasmonics and metamaterials sciences are rapidly growing due to their contributions to photonic devices fabrication with applications ranging from biomedicine to photovoltaic cells. Noble metal nanoparticles incorporated into polymer matrix have great potential for such applications due to their distinctive optical properties. However, methods to indirectly incorporate metal nanoparticles into polymeric microstructures are still on demand. Here we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, so they do not interfere in the two-photon polymerization (2PP) process. Such microstructures present a strong emission, arising from gold nanoparticles fluorescence. The microstructures produced are potential candidates for nanoplasmonics and metamaterials devices applications and the nanoparticles production method can be applied in many samples, heated simultaneously, opening the possibility for large scale processes. (C) 2012 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EFFECTS OF ADDING LANTHANUM TO Ni/ZrO2 CATALYSTS ON ETHANOL STEAM REFORMING. The catalytic performance of Ni/ZrO2 catalysts loaded with different lanthanum content for steam reforming of ethanol was investigated. Catalysts were characterized by BET surface area, X-ray diffraction, UV-vis spectroscopy, temperature programmed reduction, and X-ray absorption fine structure techniques. Results showed that lanthanum addition led to an increase in the degree of reduction of both NiO and nickel surface species interacting; with the support, due to the higher dispersion effect. The best catalytic performance at 450 degrees C was found for the Ni/2LZ catalyst, which exhibited an effluent gaseous mixture with the highest H-2 yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent biomedical applications of natural rubber (NR) latex, mostly in dry membranes, have motivated research into novel, more noble uses of this low-cost biomaterial. In this article, we provide the first report on the fabrication of layer-by-layer (LbL) films of NR alternated with the polyelectrolytes polyethylenimine (PEI) and polyallylamine hydrochloride (PAH). Stable (PAH/NR)n and (PEI/NR)n LbL films displayed similar physicochemical properties, but differed in terms of film morphology according to atomic force microscopy (AFM) and scanning electron microscopy (SEM) data. Most significantly, (PEI/NR)5 LbL films were made of smaller and flattened particles, which were not efficient for the growth and proliferation of normal human fibroblasts (NHF). In contrast, efficient NHF proliferation could be obtained with (PAH/NR)n LbL films, with the fibroblasts exhibiting the expected elongated morphology. Furthermore, cell growth did not occur for cast films of NR, thus demonstrating the suitability of the LbL method for this biologically related application. The differences between the two polyelectrolytes illustrate the importance of the film architecture and morphology, which open the way for exploiting the molecular control inherent in the LbL technique for further applications of NR-containing films. (c) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The removal of aromatic hydrocarbons from diesel has received considerable attention after environmental regulations that require petroleum refiners to raise cetane number and to limit aromatics in diesel fuel in order to improve combustion efficiency and reduce particulate and NOx emissions. An alternative is blending with Fischer–Tropsch (FT) gas-to-liquid diesel fuel; however, this option may not be economically viable solution in case of extensive blend. Another alternative is to incorporate in the diesel pool a greater fraction of the so-called light cycle oil (LCO). Due to its high aromatics content and its low cetane number (typically between 20 and 30), the incorporation of LCO may have a negative impact on the quality of diesel. Current technologies for LCO improvement are based on hydrogenation to adjust both sulphur and cetane number but while an important fraction of the aromatics present in LCO can be saturated in a deep hydrogenation process, the cetane number may still be lower than the target values specified in diesel legislations, so further upgrading is needed. An interesting technology for improving the cetane number of diesels and maintaining meanwhile high diesel yields is achieved by combining a complete hydrogenation process with a selective ring opening (SRO) reaction of the naphthenic rings. The SRO can be defined as naphthene ring-opening to form compounds with high cetane number, but without any carbon losses. Controlling the interconversion of six- and five- membered rings via an acid-catalyzed ring-contraction step is also of great importance, since selective conversion of six-membered to five-membered naphthene rings greatly influences ring-opening rates and selectivity. High intrinsic activity may be enhanced by deposition of noble metals on acidic, high surface area supports, because it is possible to arrange close proximity of the metal and acid sites. Moreover, in large-pore supports, the diffusion resistance of liquid reactants into the pores is minimized. In addition to metal centres, the acid sites of support also plays role in aromatics hydrogenation. However, the functions of different kinds of acid sites (Brønsted vs. Lewis acidity), and their optimal concentrations and strengths, remain unclear. In the present study we investigated the upgrading of an aromatic-rich feedstock over different type of metal supported on mesoporous silica-alumina. The selective hydrogenolysis and ring opening of tetrahydronaphthalene (THN or tetralin) was carried out as representative of LCO fractions after deep hydrogenation process. In this regards the aim of this study is to evaluate both the effect of metals and that of the supports characterized by different acid distribution and strength, on conversion and selectivity. For this purpose a series of catalysts were prepared by impregnation. The catalysts were characterized and conversion tests of THN were performed in a lab-scale plant operating in the pressure range from 7.0-5.0 MPa and in the temperature range from 300 to 360°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among various nanoparticles, noble metal nanoparticles have attracted considerable attention due to their optical, catalytic and conducting properties. This work has been focused on the development of an innovative method of synthesis for the preparation of metal nanosuspensions of Au, Ag, Cu, in order to achieve stable sols, showing suitable features to allow an industrial scale up of the processes. The research was developed in collaboration with a company interested in the large scale production of the studied nanosuspensions. In order to develop a commercial process, high solid concentration, long time colloidal stability and particle size control, are required. Two synthesis routes, differing by the used solvents, have been implemented: polyol based and water based synthesis. In order to achieve a process intensification the microwave heating has been applied. As a result, colloidal nanosuspensions with suitable dimensions, good optical properties, very high solid content and good stability, have been synthesized by simple and environmental friendly methods. Particularly, due to some interesting results an optimized synthesis process has been patented. Both water and polyol based synthesis, developed in the presence of a reducing agent and of a chelating polymer, allowed to obtain particle size-control and colloidal stability by tuning the different parameters. Furthermore, it has been verified that microwave device, due to its rapid and homogeneous heating, provides some advantages over conventional method. In order to optimize the final suspensions properties, for each synthesis it has been studied the effect of different parameters (temperature, time, precursors concentrations, etc) and throughout a specific optimization action a right control on nucleation and growth processes has been achieved. The achieved nanoparticles were confirmed by XRD analysis to be the desired metal phases, even at the lowest synthesis temperatures. The particles showed a diameter, measured by STEM and dynamic light scattering technique (DLS), ranging from 10 to 60 nm. Surface plasmon resonance (SPR) was monitored by UV-VIS spectroscopy confirming its dependence by nanoparticles size and shape. Moreover the reaction yield has been assessed by ICP analysis performed on the unreacted metal cations. Finally, thermal conductivity and antibacterial activity characterizations of copper and silver sols respectively are now ongoing in order to check their application as nanofluid in heat transfer processes and as antibacterial agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zusammenfassung - Die vorliegende Dissertation beschreibt die massenspektrometrische Bestimmung der Edelgaskonzentrationen und -isotopenverhältnisse von insgesamt 47 Enstatit-Chondriten (E-Chondriten). E-Chondrite bilden eine Meteoritengruppe, die sich durch einen hohen Reduktionsgrad auszeichnet. Es gibt Hinweise darauf, dass sie im inneren Bereich des Sonnensystems entstanden. Ihre chemischen und mineralogischen Eigenschaften können daher auch Aufschluss über die Genese der terrestrischen Planeten geben. Die Edelgasmessungen hatten im wesentlichen die Berechnung von Bestrahlungsaltern sowie die Untersuchung der getrappten Edelgaskomponenten zum Ziel. Die Bestrahlungsalter der E-Chondrite liegen zwischen 0.5 und 50 Millionen Jahren. Eine zweifelsfreie Aussage über Häufungen in der Altersverteilung, die auf große Impaktereignisse auf dem Mutterkörper hinweisen könnten, lässt sich aufgrund der relativ hohen Unsicherheit der Alter (20 Prozent) nicht treffen.Etwa 10 Prozent der E-Chondrite enthalten signifikante solare Gasanteile. Alle zählen zum nicht-equilibrierten petrologischen Typ 3.In der elementaren Zusammensetzung der getrappten schweren Edelgase fällt auf, dass EH3-Chondrite (H für high iron) vorrangig ein stärker fraktioniertes (planetares), relativ Ar-armes Edelgasmuster aufweisen, während alle übrigen Typen E4-6 von einer sog. subsolaren, relativ Ar-reichen Signatur dominiert werden. Diese Verteilung und Zusammensetzung lassen sich nicht ohne weiteres mit dem Modell zur Entstehung der petrologischen Typen durch Metamorphose, wie es für die gewöhnlichen Chondrite formuliert wurde, erklären.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Synthese funktionalisierter Polyorganosiloxan-µ-Netzwerke (Rh = 5 – 30 nm) gelingt durch Polycokondensation von Alkoxysilanen. Die entstehenden sphärischen Teilchen sind in unpolaren organischen Lösungsmitteln partikulär dispergierbar. Durch die sequentielle Zugabe der Silanmonomere können Kern-Schale-Partikel mit unterschiedlichen Teilchenarchitekturen realisiert werden. In der vorliegenden Arbeit wird p-Chlormethylphenyltrimethoxysilan als funktionalisiertes Monomer verwendet, um den µ-Netzwerken durch eine anschließende Quaternisierung der Chlorbenzylgruppen mit Dimethylaminoethanol amphiphile Eigenschaften zu verleihen. Durch den Kern-Schale-Aufbau der Partikel sind die hydrophilen Bereiche im Kugelinneren von der hydrophoben äußeren Schale separiert, was unerläßlich für die Verwendung der Partikel zur Verkapselung wasserlöslicher Substanzen ist.So können in den amphiphilen µ-Netzwerken beispielsweise wasserlösliche Farbstoffe verkapselt werden. Diese diffundieren sowohl aus Lösung als auch aus dem Festkörper in das geladene Partikelinnere und werden dort angereichert. Es wird eine Abhängigkeit der Farbstoffbeladung vom Quaternisierungsgrad gefunden, wobei die Anzahl an verkapselten Farbstoffmolekülen mit dem Quaternisierungsgrad zunimmt.Weiterhin können amphiphile µ-Gelpartikel auch als molekulare Nanoreaktoren zur Synthese von Edelmetallkolloiden verwendet werden, die in den Netzwerken topologisch gefangen sind. Hierzu werden zuerst Metallionen im Kugelinneren verkapselt und anschließend reduziert, wobei das Kolloidwachstum durch den wohldefinierten Reaktionsraum gesteuert wird. Neben Gold- und Palladiumkolloiden können auf diese Weise beispielsweise auch Silberkolloide in den Kernen von µ-Netzwerken hergestellt werden.