991 resultados para Damage Mechanisms
Resumo:
In this work, we demonstrate that conductive atomic force microscopy (C-AFM) is a very powerful tool to investigate, at the nanoscale, metal-oxide-semiconductor structures with silicon nanocrystals (Si-nc) embedded in the gate oxide as memory devices. The high lateral resolution of this technique allows us to study extremely small areas ( ~ 300nm2) and, therefore, the electrical properties of a reduced number of Si-nc. C-AFM experiments have demonstrated that Si-nc enhance the gate oxide electrical conduction due to trap-assisted tunneling. On the other hand, Si-nc can act as trapping centers. The amount of charge stored in Si-nc has been estimated through the change induced in the barrier height measured from the I-V characteristics. The results show that only ~ 20% of the Si-nc are charged, demonstrating that the electrical behavior at the nanoscale is consistent with the macroscopic characterization.
Resumo:
The objective of this paper is to explore the relative importance of each of Marshall's agglomeration mechanisms by examining the location of new manufacturing firms in Spain. In particular, we estimate the count of new firms by industry and location as a function of (pre-determined) local employment levels in industries that: 1) use similar workers (labor market pooling); 2) have a customer- supplier relationship (input sharing); and 3) use similar technologies (knowledge spillovers). We examine the variation in the creation of new firms across cities and across municipalities within large cities to shed light on the geographical scope of each of the three agglomeration mechanisms. We find evidence of all three agglomeration mechanisms, although their incidence differs depending on the geographical scale of the analysis.
Resumo:
SUMMARY Nuclear factor kappa B (NF-κB) transcription factors control many aspects of cell fate through induction of inflammatory, immune or survival molecules. We have identified two novel proteins, named receptor interacting protein (RIP)-4 and caspase recruitment domain (CARD) adaptor inducing interferon-β (Cardif), which activate NF-κB. Further, we have found that Cardif plays a prominent antiviral function. Antiviral innate immunity is mounted upon recognition by the host of virally associated structures like double-stranded (ds) RNA, which constitutes a viral replication product of many viruses within infected cells. dsRNA, depending on its subcellular localization, can be sensed by two separate arms of host defense. Firstly, Toll-like receptor (TLR)-3, a member of the type I transmembrane TLR family, recognizes endosomally-located dsRNA. Secondly, cytoplasmic dsRNA is detected by the recently identified RNA helicase retinoic acid inducible gene I (RIG-I). Triggering of TLR3- and RIG-I-dependent pathways results in the activation of the transcription factors NF-κB and Interferon regulatory factor (IRF)-3, which cooperatively transduce antiviral immune responses. We have demonstrated that RIP1, a kinase previously shown to be required for TNF signaling, transmits TLR3-dependent NF-κB activation. Further we have identified and characterized Cardif as an essential adaptor transmitting RIG-I-mediated antiviral responses, including activation of NF-κB and IRF3. In addition, we showed that Cardif is cleaved and inactivated by a serine protease of hepatitis C virus, and therefore may represent an attractive target for this virus to escape innate immune responses. RESUME Les facteurs de transcription "nuclear factor kappa B" (NF-κB) contrôlent divers aspects du devenir cellulaire à travers l'induction de molécules inflammatoires, immunitaires ou de survie. Nous avons identifié deux nouvelles protéines, nommées "receptor interacting protein" (RIP)-4 et "caspase recruitment domain (CARD) adaptor inducing interferon-β" (Cardif), qui activent NF-κB. En outre, nous avons trouvé que Cardif joue un rôle antiviral crucial. L'immunité innée antivirale s'établit au moment de la reconnaissance par l'hôte de structures virales, comme l'ARN double brin, qui constitue un produit de réplication de beaucoup de virus à l'intérieur de cellules infectées. L'ARN double brin, dépendant de sa localisation subcellulaire, peut être détecté par deux branches de défense distinctes. Premièrement, le récepteur transmembranaire "Toll-like" (TLR), TLR3, reconnaît l'ARN double brin lorsque localisé dans les endosomes. Deuxièmement, l'ARN double brin cytoplasmique est reconnu par l'ARN hélicase récemment décrite "retinoic acid inducible gene I" (RIG-I). Le déclenchement de voies dépendantes de TLR3 et RIG-I active les facteurs de transcription NF-κB et IRF3, qui coopèrent afin de transduire des réponses immunitaires antivirales. Nous avons démontré que RIP1, une kinase décrite précédemment dans le signalement du TNF, transmet l'activation de NF-κB dépendante de TLR3. De plus, nous avons identifié et caractérisé Cardif comme un adapteur essentiel transmettant les réponses antivirales médiées par RIG-I, qui incluent l'activation de NF-κB et IRF3. De surcroît, Cardif est clivé et inactivé par une sérine protéase du virus de l'hépatite C, et ainsi pourrait représenter une cible attractive pour ce virus afin d'échapper aux réponses immunitaires innées.
Resumo:
OBJECTIVE: Most studies on alcohol as a risk factor for injuries have been mechanism specific, and few have considered several mechanisms simultaneously or reported alcohol-attributable fractions (AAFs)-which was the aim of the current study. METHOD: Data from 3,592 injured and 3,489 noninjured patients collected between January 2003 and June 2004 in the surgical ward of the emergency department of the Lausanne University Hospital (Switzerland) were analyzed. Four injury mechanisms derived from the International Classification of Diseases, 10th Revision, were considered: transportation-related injuries, falls, exposure to forces and other events, and interpersonal violence. Multinomial logistic regression models were calculated to estimate the risk relationships of different levels of alcohol consumption, using noninjured patients as quasi-controls. The AAFs were then calculated. RESULTS: Risk relationships between injury and acute consumption were found across all mechanisms, commonly resulting in dose-response relationships. Marked differences between mechanisms were observed for relative risks and AAFs, which varied between 15.2% and 33.1% and between 10.1% and 35.9%, depending on the time window of consumption (either 6 hours or 24 hours before injury, respectively). Low and medium levels of alcohol consumption generally were associated with the most AAFs. CONCLUSIONS: This study underscores the implications of even low levels of alcohol consumption on the risk of sustaining injuries through any of the mechanisms considered. Substantial AAFs are reported for each mechanism, particularly for injuries resulting from interpersonal violence. Observation of a so-called preventive paradox phenomenon is discussed, and prevention or intervention measures are described.
Resumo:
Thrombin is involved in mediating neuronal death in cerebral ischemia. We investigated its so far unknown mode of activation in ischemic neural tissue. We used an in vitro approach to distinguish the role of circulating coagulation factors from endogenous cerebral mechanisms. We modeled ischemic stroke by subjecting rat organotypic hippocampal slice cultures to 30-min oxygen (5%) and glucose (1 mmol/L) deprivation (OGD). Perinuclear activated factor X (FXa) immunoreactivity was observed in CA1 neurons after OGD. Selective FXa inhibition by fondaparinux during and after OGD significantly reduced neuronal death in the CA1 after 48 h. Thrombin enzyme activity was increased in the medium 24 h after OGD and this increase was prevented by fondaparinux suggesting that FXa catalyzes the conversion of prothrombin to thrombin in neural tissue after ischemia in vitro. Treatment with SCH79797, a selective antagonist of the thrombin receptor protease-activated receptor-1 (PAR-1), significantly decreased neuronal cell death indicating that thrombin signals ischemic damage via PAR-1. The c-Jun N-terminal kinase (JNK) pathway plays an important role in excitotoxicity and cerebral ischemia and we observed activation of the JNK substrate, c-Jun in our model. Both the FXa inhibitor, fondaparinux and the PAR-1 antagonist SCH79797, decreased the level of phospho-c-Jun Ser73. These results indicate that FXa activates thrombin in cerebral ischemia, which leads via PAR-1 to the activation of the JNK pathway resulting in neuronal death.
Resumo:
In recent years, numerous cases of morphological gonadal alterations in fish have been recorded throughout the world and across a wide range of species. In the whitefish Coregonus fatioi from the pre-alpine Lake Thun (Switzerland), the frequency of gonadal alterations is particularly high and the variety of alteration types large. Little is known about the proximal causes and the direct consequences of these morphological features on population persistence. In particular, the potential for the observed alterations to be the phenotypic expression of reduced genetic quality has not yet been addressed. In this study, we used offspring survival during embryogenesis as a proximate indicator of male genetic quality and tested whether the presence of gonadal alterations in males is an indicator of reduced quality. Embryos resulted from in vitro fertilizations of gametes from 126 males and females. We found no significant correlation between embryo survival and gonadal alteration in adults. Our findings suggest that in C. fatioi of Lake Thun, alterations in gonad morphology are not a phenotypic expression of variation in genetic quality.
Resumo:
Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.
Resumo:
Antemortem demonstration of ischemia has proved elusive in head injury because regional CBF reductions may represent hypoperfusion appropriately coupled to hypometabolism. Fifteen patients underwent positron emission tomography within 24 hours of head injury to map cerebral blood flow (CBF), cerebral oxygen metabolism (CMRO2), and oxygen extraction fraction (OEF). We estimated the volume of ischemic brain (IBV) and used the standard deviation of the OEF distribution to estimate the efficiency of coupling between CBF and CMRO2. The IBV in patients was significantly higher than controls (67 +/- 69 vs. 2 +/- 3 mL; P < 0.01). The coexistence of relative ischemia and hyperemia in some patients implies mismatching of perfusion to oxygen use. Whereas the saturation of jugular bulb blood (SjO2) correlated with the IBV (r = 0.8, P < 0.01), SjO2 values of 50% were only achieved at an IBV of 170 +/- 63 mL (mean +/- 95% CI), which equates to 13 +/- 5% of the brain. Increases in IBV correlated with a poor Glasgow Outcome Score 6 months after injury (rho = -0.6, P < 0.05). These results suggest significant ischemia within the first day after head injury. The ischemic burden represented by this "traumatic penumbra" is poorly detected by bedside clinical monitors and has significant associations with outcome.
Resumo:
Moisture sensitivity of Hot Mix Asphalt (HMA) mixtures, generally called stripping, is a major form of distress in asphalt concrete pavement. It is characterized by the loss of adhesive bond between the asphalt binder and the aggregate (a failure of the bonding of the binder to the aggregate) or by a softening of the cohesive bonds within the asphalt binder (a failure within the binder itself), both of which are due to the action of loading under traffic in the presence of moisture. The evaluation of HMA moisture sensitivity has been divided into two categories: visual inspection test and mechanical test. However, most of them have been developed in pre-Superpave mix design. This research was undertaken to develop a protocol for evaluating the moisture sensitivity potential of HMA mixtures using the Nottingham Asphalt Tester (NAT). The mechanisms of HMA moisture sensitivity were reviewed and the test protocols using the NAT were developed. Different types of blends as moisture-sensitive groups and non-moisture-sensitive groups were used to evaluate the potential of the proposed test. The test results were analyzed with three parameters based on performance character: the retained flow number depending on critical permanent deformation failure (RFNP), the retained flow number depending on cohesion failure (RFNC), and energy ratio (ER). Analysis based on energy ratio of elastic strain (EREE ) at flow number of cohesion failure (FNC) has higher potential to evaluate the HMA moisture sensitivity than other parameters. If the measurement error in data-acquisition process is removed, analyses based on RFNP and RFNC would also have high potential to evaluate the HMA moisture sensitivity. The vacuum pressure saturation used in AASHTO T 283 and proposed test has a risk to damage specimen before the load applying.
Resumo:
As a result of sex chromosome differentiation from ancestral autosomes, male mammalian cells only contain one X chromosome. It has long been hypothesized that X-linked gene expression levels have become doubled in males to restore the original transcriptional output, and that the resulting X overexpression in females then drove the evolution of X inactivation (XCI). However, this model has never been directly tested and patterns and mechanisms of dosage compensation across different mammals and birds generally remain little understood. Here we trace the evolution of dosage compensation using extensive transcriptome data from males and females representing all major mammalian lineages and birds. Our analyses suggest that the X has become globally upregulated in marsupials, whereas we do not detect a global upregulation of this chromosome in placental mammals. However, we find that a subset of autosomal genes interacting with X-linked genes have become downregulated in placentals upon the emergence of sex chromosomes. Thus, different driving forces may underlie the evolution of XCI and the highly efficient equilibration of X expression levels between the sexes observed for both of these lineages. In the egg-laying monotremes and birds, which have partially homologous sex chromosome systems, partial upregulation of the X (Z in birds) evolved but is largely restricted to the heterogametic sex, which provides an explanation for the partially sex-biased X (Z) expression and lack of global inactivation mechanisms in these lineages. Our findings suggest that dosage reductions imposed by sex chromosome differentiation events in amniotes were resolved in strikingly different ways.
Resumo:
Microstructural and magnetic measurements of the evolution by heat treatment of initially amorphous Nd16Fe76B8 alloys prepared by melt spinning are presented. Evidence of magnetic hardening above a threshold temperature induced by magnetic isolation of the Nd2Fe14B grains is provided. A thermodynamic and kinetic explanation of local melting of the intergranular nanostructured Nd¿rich eutectic phase at temperatures below 900 K based on capillary effects is presented. A subsequent Ostwald ripening process moves Nd to wet intimately the hard magnetic grains, becoming, on cooling, a real paramagnetic isolating thin film (~2.5 nm). By using a simple analogy, it is shown that the switching magnetization field in a single¿domain crystal can be drastically affected through the exchange coupling to neighboring grains with different orientation of the easy axis. This effect should be important enough to reinforce the coercive field of polycrystalline hard magnetic materials and explains the observed enhancement from 0.9 to 1.9 T.
Resumo:
Candida albicans causes superficial to systemic infections in immuno-compromised individuals. The concomitant use of fungistatic drugs and the lack of cidal drugs frequently result in strains that could withstand commonly used antifungals, and display multidrug resistance (MDR). In search of novel fungicidals, in this study, we have explored a plant alkaloid berberine (BER) for its antifungal potential. For this, we screened an in-house transcription factor (TF) mutant library of C. albicans strains towards their susceptibility to BER. Our screen of TF mutant strains identified a heat shock factor (HSF1), which has a central role in thermal adaptation, to be most responsive to BER treatment. Interestingly, HSF1 mutant was not only highly susceptible to BER but also displayed collateral susceptibility towards drugs targeting cell wall (CW) and ergosterol biosynthesis. Notably, BER treatment alone could affect the CW integrity as was evident from the growth retardation of MAP kinase and calcineurin pathway null mutant strains and transmission electron microscopy. However, unlike BER, HSF1 effect on CW appeared to be independent of MAP kinase and Calcineurin pathway genes. Additionally, unlike hsf1 null strain, BER treatment of Candida cells resulted in dysfunctional mitochondria, which was evident from its slow growth in non-fermentative carbon source and poor labeling with mitochondrial membrane potential sensitive probe. This phenotype was reinforced with an enhanced ROS levels coinciding with the up-regulated oxidative stress genes in BER-treated cells. Together, our study not only describes the molecular mechanism of BER fungicidal activity but also unravels a new role of evolutionary conserved HSF1, in MDR of Candida.
Resumo:
Birds exhibit exceptional longevity and are thus regarded as a convenient model to study the intrinsic mechanisms of aging. The oxidative stress theory of aging suggests that individuals age because molecules, cells, tissues, organs, and, ultimately, animals accumulate oxidative damage over time. Accumulation of damage progressively reduces the level of antioxidant defences that are expected to decline with age. To test this theory, we measured the resistance of red blood cells to free radical attack in a captive population of greater flamingo (Phoenicopterus ruber roseus) of known age ranging from 0.3 to 45 years. We observed a convex relationship with young adults (12-20 years old) having greater resistance to oxidative stress than immature flamingos (5 months old) and old flamingos (30-45 years old). Our results suggest that the antioxidant detoxifying system must go through a maturation process before being completely functional. It then declines in older adults, supporting the oxidative theory of aging. Oxidative stress could hence play a significant role in shaping the pattern of senescence in a very long-lived bird species.