987 resultados para DNA profiling
Resumo:
The intracellular location of nucleic acid sensors prevents recognition of extracellular self-DNA released by dying cells. However, on forming a complex with the endogenous antimicrobial peptide LL37, extracellular DNA is transported into endosomal compartments of plasmacytoid dendritic cells, leading to activation of Toll-like receptor-9 and induction of type I IFNs. Whether LL37 also transports self-DNA into nonplasmacytoid dendritic cells, leading to type I IFN production via other intracellular DNA receptors is unknown. Here we found that LL37 very efficiently transports self-DNA into monocytes, leading the production of type I IFNs in a Toll-like receptor-independent manner. This type I IFN induction was mediated by double-stranded B form DNA, regardless of its sequence, CpG content, or methylation status, and required signaling through the adaptor protein STING and TBK1 kinase, indicating the involvement of cytosolic DNA sensors. Thus, our study identifies a novel link between the antimicrobial peptides and type I IFN responses involving DNA-dependent activation of cytosolic sensors in monocytes.
Resumo:
PURPOSE: Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disease. Although electroretinographic (ERG) measurements can discriminate clinical subgroups, the identification of the underlying genetic defects has been complicated for CSNB because of genetic heterogeneity, the uncertainty about the mode of inheritance, and time-consuming and costly mutation scanning and direct sequencing approaches. METHODS: To overcome these challenges and to generate a time- and cost-efficient mutation screening tool, the authors developed a CSNB genotyping microarray with arrayed primer extension (APEX) technology. To cover as many mutations as possible, a comprehensive literature search was performed, and DNA samples from a cohort of patients with CSNB were first sequenced directly in known CSNB genes. Subsequently, oligonucleotides were designed representing 126 sequence variations in RHO, CABP4, CACNA1F, CACNA2D4, GNAT1, GRM6, NYX, PDE6B, and SAG and spotted on the chip. RESULTS: Direct sequencing of genes known to be associated with CSNB in the study cohort revealed 21 mutations (12 novel and 9 previously reported). The resultant microarray containing oligonucleotides, which allow to detect 126 known and novel mutations, was 100% effective in determining the expected sequence changes in all known samples assessed. In addition, investigation of 34 patients with CSNB who were previously not genotyped revealed sequence variants in 18%, of which 15% are thought to be disease-causing mutations. CONCLUSIONS: This relatively inexpensive first-pass genetic testing device for patients with a diagnosis of CSNB will improve molecular diagnostics and genetic counseling of patients and their families and gives the opportunity to analyze whether, for example, more progressive disorders such as cone or cone-rod dystrophies underlie the same gene defects.
Resumo:
Wolfram syndrome is a progressive neurodegenerative disorder transmitted in an autosomal recessive mode. We report two Wolfram syndrome families harboring multiple deletions of mitochondrial DNA. The deletions reached percentages as high as 85-90% in affected tissues such as the central nervous system of one patient, while in other tissues from the same patient and from other members of the family, the percentages of deleted mitochondrial DNA genomes were only 1-10%. Recently, a Wolfram syndrome gene has been linked to markers on 4p16. In both families linkage between the disease locus and 4p16 markers gave a maximum multipoint lod score of 3.79 at theta = 0 (Pi<0.03) with respect to D4S431. In these families, the syndrome was caused by mutations in this nucleus-encoded gene which deleteriously interacts with the mitochondrial genome. This is the first evidence of the implication of both genomes in a recessive disease.
Resumo:
Wolfram syndrome is a progressive neurodegenerative disorder transmitted in an autosomal recessive mode. We report two Wolfram syndrome families harboring multiple deletions of mitochondrial DNA. The deletions reached percentages as high as 85-90% in affected tissues such as the central nervous system of one patient, while in other tissues from the same patient and from other members of the family, the percentages of deleted mitochondrial DNA genomes were only 1-10%. Recently, a Wolfram syndrome gene has been linked to markers on 4p16. In both families linkage between the disease locus and 4p16 markers gave a maximum multipoint lod score of 3.79 at theta = 0 (Pi<0.03) with respect to D4S431. In these families, the syndrome was caused by mutations in this nucleus-encoded gene which deleteriously interacts with the mitochondrial genome. This is the first evidence of the implication of both genomes in a recessive disease.
Resumo:
PURPOSE: To assess the usefulness of combining hyperthermia with a DNA repair inhibitor (double-strand break bait [Dbait]) and its potential application to radiofrequency ablation (RFA) in a preclinical model of human colorectal cancer. MATERIALS AND METHODS: The local ethics committee of animal experimentation approved all investigations. First, the relevance was assessed by studying the survival of four human colorectal adenocarcinoma cell cultures after 1 hour of hyperthermia at 41°C or 43°C with or without Dbait. Human colon adenocarcinoma cells (HT-29) were grafted subcutaneously into nude mice (n = 111). When tumors reached approximately 500 mm(3), mice were treated with Dbait alone (n = 20), sublethal RFA (n = 21), three different Dbait schemes and sublethal RFA (n = 52), or a sham treatment (n = 18). RFA was performed to ablate the tumor center alone. To elucidate antitumor mechanisms, 39 mice were sacrificed for blinded pathologic analysis, including assessment of DNA damage, cell proliferation, and tumor necrosis. Others were monitored for tumor growth and survival. Analyses of variance and log-rank tests were used to evaluate differences. RESULTS: When associated with mild hyperthermia, Dbait induced cytotoxicity in all tested colon cancer cell lines. Sublethal RFA or Dbait treatment alone moderately improved survival (median, 40 days vs 28 days for control; P = .0005) but combination treatment significantly improved survival (median, 84 days vs 40 days for RFA alone, P = .0004), with approximately half of the animals showing complete tumor responses. Pathologic studies showed that the Dbait and RFA combination strongly enhances DNA damage and coagulation areas in tumors. CONCLUSION: Combining Dbait with RFA sensitizes the tumor periphery to mild hyperthermia and increases RFA antitumor efficacy.
Resumo:
Comment on: Witz G, et al. Proc Natl Acad Sci USA 2011; 108:3608-11.
Resumo:
In the presence of 2-hydroxybiphenyl, the enhancer binding protein, HbpR, activates the sigma54-dependent P(hbpC) promoter and controls the initial steps of 2-hydroxybiphenyl degradation in Pseudomonas azelaica. In the activation process, an oligomeric HbpR complex of unknown subunit composition binds to an operator region containing two imperfect palindromic sequences. Here, the HbpR-DNA binding interactions were investigated by site-directed mutagenesis of the operator region and by DNA-binding assays using purified HbpR. Mutations that disrupted the twofold symmetry in the palindromes did not affect the binding affinity of HbpR, but various mutations along a 60 bp region, and also outside the direct palindromic sequences, decreased the binding affinity. Footprints of HbpR on mutant operator fragments showed that a partial loss of binding contacts occurs, suggesting that the binding of one HbpR 'protomer' in the oligomeric complex is impaired whilst leaving the other contacts intact. An HbpR variant, devoid of its N-terminal sensing A-domain, was unable to activate transcription from the hbpC promoter while maintaining protection of the operator DNA in footprints. Wild-type HbpR was unable to activate transcription from the hbpC promoter when delta A-HbpR was expressed in the same cell, suggesting the formation of (repressing) hetero-oligomers. This model implies that HbpR can self-associate on its operator DNA without effector recognition or ATP binding. Furthermore, our findings suggest that the N-terminal sensing domain of HbpR is needed to activate the central ATPase domain rather than to repress a constitutively active C domain, as is the case for the related regulatory protein XylR.
Resumo:
The Saccharomyces cerevisiae Dmc1 and Tid1 proteins are required for the pairing of homologous chromosomes during meiotic recombination. This pairing is the precursor to the formation of crossovers between homologs, an event that is necessary for the accurate segregation of chromosomes. Failure to form crossovers can have serious consequences and may lead to chromosomal imbalance. Dmc1, a meiosis-specific paralog of Rad51, mediates the pairing of homologous chromosomes. Tid1, a Rad54 paralog, although not meiosis-specific, interacts with Dmc1 and promotes crossover formation between homologs. In this study, we show that purified Dmc1 and Tid1 interact physically and functionally. Dmc1 forms stable nucleoprotein filaments that can mediate DNA strand invasion. Tid1 stimulates Dmc1-mediated formation of joint molecules. Under conditions optimal for Dmc1 reactions, Rad51 is specifically stimulated by Rad54, establishing that Dmc1-Tid1 and Rad51-Rad54 function as specific pairs. Physical interaction studies show that specificity in function is not dictated by direct interactions between the proteins. Our data are consistent with the hypothesis that Rad51-Rad54 function together to promote intersister DNA strand exchange, whereas Dmc1-Tid1 tilt the bias toward interhomolog DNA strand exchange.
Resumo:
Objectives: Dermatophytes are highly specialized fungi which are the most common agents of superficial mycoses in humans and animals. The particular ability of these microorganisms to invade and multiply within keratinized host structures is presumably linked to their secreted keratinolytic activity, which is therefore a major putative virulence attribute of these fungi. The overall adaptation and transcriptional response of dermatophytes during protein degradation and/or infection is largely unknown. Methods: A Trichophyton rubrum cDNA microarray was developed and used for the transcriptional analysis of T. rubrum and Arthroderma benhamiae cells during growth on protein substrates. Moreover, the gene expression profile in A. benhamiae cells was monitored during infection of guinea pigs. Results: T. rubrum and A. benhamiae cells activate a large set of genes encoding secreted endo- and exoproteases during growth on soy and keratin. In addition, other specifically induced factors with potential implication in protein utilization were identified, e.g. multiple transporters, metabolic enzymes, transcription factors and hypothetical proteins with unknown function. Notably however, the protease gene expression profile in the fungal cells during infection was significantly different from the pattern elicited during in vitro growth on keratin. Conclusions: Our results suggest specific functions of individual proteases during infection, which may not be restricted to the degradation of keratin. This first, broad in vivo transcriptional profiling approach in dermatophytes gives new molecular insights into pathogenicity associated adaptation mechanisms that make these microorganisms the most successful causitive agents of superficial mycoses.
Resumo:
BACKGROUND AND AIMS: The genus Olea (Oleaceae) includes approx. 40 taxa of evergreen shrubs and trees classified in three subgenera, Olea, Paniculatae and Tetrapilus, the first of which has two sections (Olea and Ligustroides). Olive trees (the O. europaea complex) have been the subject of intensive research, whereas little is known about the phylogenetic relationships among the other species. To clarify the biogeographical history of this group, a molecular analysis of Olea and related genera of Oleaceae is thus necessary. METHODS: A phylogeny was built of Olea and related genera based on sequences of the nuclear ribosomal internal transcribed spacer-1 and four plastid regions. Lineage divergence and the evolution of abaxial peltate scales, the latter character linked to drought adaptation, were dated using a Bayesian method. KEY RESULTS: Olea is polyphyletic, with O. ambrensis and subgenus Tetrapilus not sharing a most recent common ancestor with the main Olea clade. Partial incongruence between nuclear and plastid phylogenetic reconstructions suggests a reticulation process in the evolution of subgenus Olea. Estimates of divergence times for major groups of Olea during the Tertiary were obtained. CONCLUSIONS: This study indicates the necessity of revising current taxonomic boundaries in Olea. The results also suggest that main lines of evolution were promoted by major Tertiary climatic shifts: (1) the split between subgenera Olea and Paniculatae appears to have taken place at the Miocene-Oligocene boundary; (2) the separation of sections Ligustroides and Olea may have occurred during the Early Miocene following the Mi-1 glaciation; and (3) the diversification within these sections (and the origin of dense abaxial indumentum in section Olea) was concomitant with the aridification of Africa in the Late Miocene.
Resumo:
Bacterial plasmids with two origins of replication in convergent orientation are frequently knotted in vivo. The knots formed are localised within the newly replicated DNA regions. Here, we analyse DNA knots tied within replication bubbles of such plasmids, and observe that the knots formed show predominantly positive signs of crossings. We propose that helical winding of replication bubbles in vivo leads to topoisomerase-mediated formation of knots on partially replicated DNA molecules.
Resumo:
Background: Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results: The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions: Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer.