995 resultados para DNA array


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery that the three ring polyamide Im-Py-Py-Dp containing imidazole (Im) and pyrrole (Py) carboxamides binds the DNA sequence 5'-(A,T)G(A,T)C(A,T)-3' as an antiparallel dimer offers a new model for the design of ligands for specific recognition of sequences in the minor groove containing both G,C and A,T base pairs. In Chapter 2, experiments are described in which the sequential addition of five N- methylpyrrolecarboxamides to the imidazole-pyrrole polyamide Im-Py-Py-Dp affords a series of six homologous polyamides, Im-(Py)2-7-Dp, that differ in the size of their binding site, apparent first order binding affinity, and sequence specificity. These results demonstrate that DNA sequences up to nine base pairs in length can be specifically recognized by imidazole-pyrrole polyamides containing three to seven rings by 2:1 polyamide-DNA complex formation in the minor groove. Recognition of a nine base pair site defines the new lower limit of the binding site size that can be recognized by polyamides containing exclusively imidazole and pyrrolecarboxamides. The results of this study should provide useful guidelines for the design of new polyamides that bind longer DNA sites with enhanced affinity and specificity.

In Chapter 3 the design and synthesis of the hairpin polyamide Im-Py-Im-Py-γ-Im- Py-Im-Py-Dp is described. Quantitative DNase I footprint titration experiments reveal that Im-Py-Im-Py-γ-Im-Py-Im-Py-Dp binds six base pair 5'-(A,T)GCGC(A,T)-3' sequences with 30-fold higher affinity than the unlinked polyamide Im-Py-Im-Py-Dp. The hairpin polyamide does not discriminate between A•T and T•A at the first and sixth positions of the binding site as three sites 5'-TGCGCT-3', 5'-TGCGCA-3', and 5 'AGCGCT- 3' are bound with similar affinity. However, Im-Py-Im-Py-γ-Im-Py-Im-PyDp is specific for and discriminates between G•C and C•G base pairs in the 5'-GCGC-3' core as evidenced by lower affinities for the mismatched sites 5'-AACGCA-3', 5'- TGCGTT-3', 5'-TGCGGT-3', and 5'-ACCGCT-3'.

In Chapter 4, experiments are described in which a kinetically stable hexa-aza Schiff base La3+ complex is covalently attached to a Tat(49-72) peptide which has been shown to bind the HIV-1 TAR RNA sequence. Although these metallo-peptides cleave TAR site-specifically in the hexanucleotide loop to afford products consistent with hydrolysis, a series of control experiments suggests that the observed cleavage is not caused by a sequence-specifically bound Tat(49-72)-La(L)3+ peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of synthetic molecules that recognize specific sequences of DNA is an ongoing challenge in molecular medicine. Cell-permeable small molecules targeting predetermined DNA sequences offer a potential approach for offsetting the abnormal effects of misregulated gene-expression. Over the past twenty years, Professor Peter B. Dervan has developed a set of pairing rules for the rational design of minor groove binding polyamides containing pyrrole (Py), imidazole (Im), and hydroxypyrrole (Hp). Polyamides have illustrated the capability to permeate cells and inhibit transcription of specific genes in vivo. This provides impetus to identify structural elements that expand the repetoire of polyamide motifs with recognition properties comparable to naturally occurring DNA binding proteins. Through the introduction of chiral amino acids, we have developed chiral polyamides with stereochemically regulated binding characteristics. In addition, chiral substituents have facilitated the development of new polyamide motifs that broaden binding site sizes targetable by this class of ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small molecules that bind to any predetermined DNA sequence in the human genome are potentially useful tools for molecular biology and human medicine. Polyamides containing N-methylimidazole (Im) N-methylpyrrole (Py) are cell permeable small molecules that bind DNA according to a set of "pairing rules" with affinities and specificities similar to many naturally occurring DNA binding proteins. Py-Im polyamides offer a general approach to the chemical regulation of gene expression. We demonstrate here that polyamide containing a DNA alkylating moiety seco-CBI can specifically direct sequence specific DNA alkylation. We can also control the strand of DNA that is alkylated, depending on the enantiomer of seco-CBI used and the orientation of the polyamide relative to the alkylation site (Chapter 2). This class of molecules has been applied to a gene repair system in collaboration with the Baltimore group at Caltech (Chapter 3). Also reported are additional seco-CBI polyamide conjugates synthesized to study other systems (HIV-1 and COX-2) (Appendix 1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the mechanism of formation of periodic void arrays inside fused silica and BK7 glass irradiated by a tightly focused femtosecond (fs) laser beam. Our results show that the period of each void array is not uniform along the laser propagation direction, and the average period of the void array decreases with increasing pulse number and pulse energy. We propose a mechanism in which a standing electron plasma wave created by the interference of a fs-laser-driven electron wave and its reflected wave is responsible for the formation of the periodic void arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algorithmic DNA tiles systems are fascinating. From a theoretical perspective, they can result in simple systems that assemble themselves into beautiful, complex structures through fundamental interactions and logical rules. As an experimental technique, they provide a promising method for programmably assembling complex, precise crystals that can grow to considerable size while retaining nanoscale resolution. In the journey from theoretical abstractions to experimental demonstrations, however, lie numerous challenges and complications.

In this thesis, to examine these challenges, we consider the physical principles behind DNA tile self-assembly. We survey recent progress in experimental algorithmic self-assembly, and explain the simple physical models behind this progress. Using direct observation of individual tile attachments and detachments with an atomic force microscope, we test some of the fundamental assumptions of the widely-used kinetic Tile Assembly Model, obtaining results that fit the model to within error. We then depart from the simplest form of that model, examining the effects of DNA sticky end sequence energetics on tile system behavior. We develop theoretical models, sequence assignment algorithms, and a software package, StickyDesign, for sticky end sequence design.

As a demonstration of a specific tile system, we design a binary counting ribbon that can accurately count from a programmable starting value and stop growing after overflowing, resulting in a single system that can construct ribbons of precise and programmable length. In the process of designing the system, we explain numerous considerations that provide insight into more general tile system design, particularly with regards to tile concentrations, facet nucleation, the construction of finite assemblies, and design beyond the abstract Tile Assembly Model.

Finally, we present our crystals that count: experimental results with our binary counting system that represent a significant improvement in the accuracy of experimental algorithmic self-assembly, including crystals that count perfectly with 5 bits from 0 to 31. We show some preliminary experimental results on the construction of our capping system to stop growth after counters overflow, and offer some speculation on potential future directions of the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational protein design (CPD) is a burgeoning field that uses a physical-chemical or knowledge-based scoring function to create protein variants with new or improved properties. This exciting approach has recently been used to generate proteins with entirely new functions, ones that are not observed in naturally occurring proteins. For example, several enzymes were designed to catalyze reactions that are not in the repertoire of any known natural enzyme. In these designs, novel catalytic activity was built de novo (from scratch) into a previously inert protein scaffold. In addition to de novo enzyme design, the computational design of protein-protein interactions can also be used to create novel functionality, such as neutralization of influenza. Our goal here was to design a protein that can self-assemble with DNA into nanowires. We used computational tools to homodimerize a transcription factor that binds a specific sequence of double-stranded DNA. We arranged the protein-protein and protein-DNA binding sites so that the self-assembly could occur in a linear fashion to generate nanowires. Upon mixing our designed protein homodimer with the double-stranded DNA, the molecules immediately self-assembled into nanowires. This nanowire topology was confirmed using atomic force microscopy. Co-crystal structure showed that the nanowire is assembled via the desired interactions. To the best of our knowledge, this is the first example of a protein-DNA self-assembly that does not rely on covalent interactions. We anticipate that this new material will stimulate further interest in the development of advanced biomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As espécies reativas de oxigênio (ERO) são geradas durante o metabolismo celular normal e podem produzir vários danos oxidativos no DNA, tais como lesões nas bases nitrogenadas ou sítios apurínico/apirimidínico (AP). Essas lesões podem acarretar acúmulo de sítios de mutações, caso esses danos não sejam reparados. Entretanto, as bactérias possuem vários mecanismos de defesa contra as ERO que desempenham um importante papel na manutenção da fisiologia. O objetivo deste trabalho foi o de avaliar se sistemas enzimáticos, como o reparo por excisão de bases (BER), sistema SOS e SoxRS, interferem em respostas como a sensibilidade aos antibióticos, aderência das células bacterianas a superfícies bióticas ou abióticas e formação de biofilme. Os mutantes utilizados no presente estudo são todos derivados de Escherichia coli K-12 e os resultados obtidos mostraram que, dos mutantes BER testados, o único que apresentou diferença no perfil de sensibilidade aos antimicrobiamos em relação à cepa selvagem (AB1157) foi o mutante xthA- (BW9091), deficiente em exonuclease III. No teste de aderência qualitativo realizado com linhagem de células HEp-2 (originária de carcinoma de laringe humana) foi observado que onze cepas da nossa coleção, apresentaram um padrão denominando like-AA, contrastando com o que era esperado para as cepas de E. coli utilizadas como controle negativo, que apresentam aderência discreta sem padrão típico. A aderência manose-sensível via fímbria do tipo I avaliada nesse estudo mostrou que essa fimbria, possui um papel relevante na intensidade da aderência e filamentação nessas cepas estudas. A filamentação é uma resposta SOS importante para que o genoma seja reparado antes de ser partilhado pelas células filhas. Além disso, com relação à formação de biofilme, oito cepas apresentaram um biofilme forte sendo que essa resposta não foi acompanhada pelo aumento da intensidade de filamentação. Nossos resultados em conjunto sugerem o envolvimento de estresse oxidativo na definição de parâmetros como sensibilidade a antimicrobianos, padrão e intensidade de aderência, filamentação e formação de biofilme nas amostras de E. coli K-12 avaliadas neste trabalho. Sugerimos que a aderência gera estresse oxidativo causando danos no DNA, o que leva a indução do sistema SOS resultando na resposta de filamentação observada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruses possess very specific methods of targeting and entering cells. These methods would be extremely useful if they could also be applied to drug delivery, but little is known about the molecular mechanisms of the viral entry process. In order to gain further insight into mechanisms of viral entry, chemical and spectroscopic studies in two systems were conducted, examining hydrophobic protein-lipid interactions during Sendai virus membrane fusion, and the kinetics of bacteriophage λ DNA injection.

Sendai virus glycoprotein interactions with target membranes during the early stages of fusion were examined using time-resolved hydrophobic photoaffinity labeling with the lipid-soluble carbene generator3-(trifluoromethyl)-3-(m-^(125 )I] iodophenyl)diazirine (TID). The probe was incorporated in target membranes prior to virus addition and photolysis. During Sendai virus fusion with liposomes composed of cardiolipin (CL) or phosphatidylserine (PS), the viral fusion (F) protein is preferentially labeled at early time points, supporting the hypothesis that hydrophobic interaction of the fusion peptide at the N-terminus of the F_1 subunit with the target membrane is an initiating event in fusion. Correlation of the hydrophobic interactions with independently monitored fusion kinetics further supports this conclusion. Separation of proteins after labeling shows that the F_1 subunit, containing the putative hydrophobic fusion sequence, is exclusively labeled, and that the F_2 subunit does not participate in fusion. Labeling shows temperature and pH dependence consistent with a need for protein conformational mobility and fusion at neutral pH. Higher amounts of labeling during fusion with CL vesicles than during virus-PS vesicle fusion reflects membrane packing regulation of peptide insertion into target membranes. Labeling of the viral hemagglutinin/neuraminidase (HN) at low pH indicates that HN-mediated fusion is triggered by hydrophobic interactions, after titration of acidic amino acids. HN labeling under nonfusogenic conditions reveals that viral binding may involve hydrophobic as well as electrostatic interactions. Controls for diffusional labeling exclude a major contribution from this source. Labeling during reconstituted Sendai virus envelope-liposome fusion shows that functional reconstitution involves protein retention of the ability to undergo hydrophobic interactions.

Examination of Sendai virus fusion with erythrocyte membranes indicates that hydrophobic interactions also trigger fusion between biological membranes, and that HN binding may involve hydrophobic interactions as well. Labeling of the erythrocyte membranes revealed close membrane association of spectrin, which may play a role in regulating membrane fusion. The data show that hydrophobic fusion protein interaction with both artificial and biological membranes is a triggering event in fusion. Correlation of these results with earlier studies of membrane hydration and fusion kinetics provides a more detailed view of the mechanism of fusion.

The kinetics of DNA injection by bacteriophage λ. into liposomes bearing reconstituted receptors were measured using fluorescence spectroscopy. LamB, the bacteriophage receptor, was extracted from bacteria and reconstituted into liposomes by detergent removal dialysis. The DNA binding fluorophore ethidium bromide was encapsulated in the liposomes during dialysis. Enhanced fluorescence of ethidium bromide upon binding to injected DNA was monitored, and showed that injection is a rapid, one-step process. The bimolecular rate law, determined by the method of initial rates, revealed that injection occurs several times faster than indicated by earlier studies employing indirect assays.

It is hoped that these studies will increase the understanding of the mechanisms of virus entry into cells, and to facilitate the development of virus-mimetic drug delivery strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the cell, the binding of proteins to specific sequences of double helical DNA is essential for controlling the processes of protein synthesis (at the level of DNA transcription) and cell proliferation (at the level of DNA replication). In the laboratory, the sequence-specific DNA binding/cleaving properties of restriction endonuclease enzymes (secreted by microorganisms to protect them from foreign DNA molecules) have helped to fuel a revolution in molecular biology. The strength and specificity of a protein:DNA interaction depend upon structural features inherent to the protein and DNA sequences, but it is now appreciated that these features (and therefore protein:DNA complexation) may be altered (regulated) by other protein:DNA complexes, or by environmental factors such as temperature or the presence of specific organic molecules or inorganic ions. It is also now appreciated that molecules much smaller than proteins (including antibiotics of molecular weight less than 2000 and oligonucleotides) can bind to double-helical DNA in sequence-specific fashion. Elucidation of structural motifs and microscopic interactions responsible for the specific molecular recognition of DNA leads to greater understanding of natural processes and provides a basis for the design of novel sequence-specific DNA binding molecules. This thesis describes the synthesis and DNA binding/cleaving characteristics of molecules designed to probe structural, stereochemical, and environmental factors that regulate sequence-specific DNA recognition.

Chapter One introduces the DNA minor groove binding antibiotics Netropsin and Distamycin A, which are di- and tri(N-methylpyrrolecarboxamide) peptides, respectively. The method of DNA affinity cleaving, which has been employed to determine DNA binding properties of designed synthetic molecules is described. The design and synthesis of a series of Netropsin dimers linked in tail-to-tail fashion (by oxalic, malonic, succinic, or fumaric acid), or in head-to-tail fashion (by glycine, β-alanine, and γ-aminobutanoic acid (Gaba)) are presented. These Bis(Netropsin)s were appended with the iron-chelating functionality EDTA in order to make use of the technique of DNA affinity cleaving. Bis(Netropsin)-EDTA compounds are analogs of penta(N-methylpyrrolecarboxamide)-EDTA (P5E), which may be considered a head-to-tail Netropsin dimer linked by Nmethylpyrrolecarboxamide. Low- and high-resolution analysis of pBR322 DNA affinity cleaving by the iron complexes of these molecules indicated that small changes in the length and nature of the linker had significant effects on DNA binding/cleaving efficiency (a measure of DNA binding affinity). DNA binding/cleaving efficiency was found to decrease with changes in the linker in the order β-alanine > succinamide > fumaramide > N-methylpyrrolecarboxamide > malonamide >glycine, γ-aminobutanamide > oxalamide. In general, the Bis(Netropsin)-EDTA:Fe compounds retained the specificity for seven contiguous A:T base pairs characteristic of P5E:Fe binding. However, Bis(Netropsin)Oxalamide- EDTA:Fe exhibited decreased specificity for A:T base pairs, and Bis(Netropsin)-Gaba-EDT A:Fe exhibited some DNA binding sites of less than seven base pairs. Bis(Netropsin)s linked with diacids have C2-symmmetrical DNA binding subunits and exhibited little DNA binding orientation preference. Bis(Netropsin)s linked with amino acids lack C2-symmetrical DNA binding subunits and exhibited higher orientation preferences. A model for the high DNA binding orientation preferences observed with head-to-tail DNA minor groove binding molecules is presented.

Chapter Two describes the design, synthesis, and DNA binding properties of a series of chiral molecules: Bis(Netropsin)-EDTA compounds with linkers derived from (R,R)-, (S,S)-, and (RS,SR)-tartaric acids, (R,R)-, (S,S)-, and (RS,SR)-tartaric acid acetonides, (R)- and (S)-malic acids, N ,N-dimethylaminoaspartic acid, and (R)- and (S)-alanine, as well as three constitutional isomers in which an N-methylpyrrolecarboxamide (P1) subunit and a tri(N-methylpyrrolecarboxamide)-EDTA (P3-EDTA) subunit were linked by succinic acid, (R ,R)-, and (S ,S)-tartaric acids. DNA binding/cleaving efficiencies among this series of molecules and the Bis(Netropsin)s described in Chapter One were found to decrease with changes in the linker in the order β-alanine > succinamide > P1-succinamide-P3 > fumaramide > (S)-malicamide > N-methylpyrrolecarboxamide > (R)-malicamide > malonamide > N ,N-dimethylaminoaspanamide > glycine = Gaba = (S,S)-tartaramide = P1-(S,S)-tanaramide-P3 > oxalamide > (RS,SR)-tartaramide = P1- (R,R)-tanaramide-P3 > (R,R)-tartaramide (no sequence-specific DNA binding was detected for Bis(Netropsin)s linked by (R)- or (S)-alanine or by tartaric acid acetonides). The chiral molecules retained DNA binding specificity for seven contiguous A:T base pairs. From the DNA affinity cleaving data it could be determined that: 1) Addition of one or two substituents to the linker of Bis(Netropsin)-Succinamide resulted in stepwise decreases in DNA binding affinity; 2) molecules with single hydroxyl substituents bound DNA more strongly than molecules with single dimethylamino substituents; 3) hydroxyl-substituted molecules of (S) configuration bound more strongly to DNA than molecules of (R) configuration. This stereochemical regulation of DNA binding is proposed to arise from the inherent right-handed twist of (S)-enantiomeric Bis(Netropsin)s versus the inherent lefthanded twist of (R)-enantiomeric Bis(Netropsin)s, which makes the (S)-enantiomers more complementary to the right-handed twist of B form DNA.

Chapter Three describes the design and synthesis of molecules for the study of metalloregulated DNA binding phenomena. Among a series of Bis(Netropsin)-EDTA compounds linked by homologous tethers bearing four, five, or six oxygen atoms, the Bis(Netropsin) linked by a pentaether tether exhibited strongly enhanced DNA binding/cleaving in the presence of strontium or barium cations. The observed metallospecificity was consistent with the known affinities of metal cations for the cyclic hexaether 18-crown-6 in water. High-resolution DNA affinity cleaving analysis indicated that DNA binding by this molecule in the presence of strontium or barium was not only stronger but of different sequence-specificity than the (weak) binding observed in the absence of metal cations. The metalloregulated binding sites were consistent with A:T binding by the Netropsin subunits and G:C binding by a strontium or barium:pentaether complex. A model for the observed positive metalloregulation and novel sequence-specificity is presented. The effects of 44 different cations on DNA affinity cleaving by P5E:Fe were examined. A series of Bis(Netropsin)-EDTA compounds linked by tethers bearing two, three, four, or five amino groups was also synthesized. These molecules exhibited strong and specific binding to A:T rich regions of DNA. It was found that the iron complexes of these molecules bound and cleaved DNA most efficiently at pH 6.0-6.5, while P5E:Fe bound and cleaved most efficiently at pH 7.5-8.0. Incubating the Bis(Netropsin) Polyamine-EDTA:Fe molecules with K2PdCl4 abolished their DNA binding/cleaving activity. It is proposed that the observed negative metalloregulation arises from kinetically inert Bis(Netropsin) Polyamine:Pd(II) complexes or aggregates, which are sterically unsuitable for DNA complexation. Finally, attempts to produce a synthetic metalloregulated DNA binding protein are described. For this study, five derivatives of a synthetic 52 amino acid residue DNA binding/cleaving protein were produced. The synthetic mutant proteins carried a novel pentaether ionophoric amino acid residue at different positions within the primary sequence. The proteins did not exhibit significant DNA binding/cleaving activity, but they served to illustrate the potential for introducing novel amino acid residues within DNA binding protein sequences, and for the development of the tricyclohexyl ester of EDTA as a superior reagent for the introduction of EDT A into synthetic proteins.

Chapter Four describes the discovery and characterization of a new DNA binding/cleaving agent, [SalenMn(III)]OAc. This metal complex produces single- and double-strand cleavage of DNA, with specificity for A:T rich regions, in the presence of oxygen atom donors such as iodosyl benzene, hydrogen peroxide, or peracids. Maximal cleavage by [SalenMn(III)]OAc was produced at pH 6-7. A comparison of DNA singleand double-strand cleavage by [SalenMn(III)]+ and other small molecules (Methidiumpropyl-EDTA:Fe, Distamycin-EDTA:Fe, Neocarzinostatin, Bleomycin:Fe) is presented. It was found that DNA cleavage by [SalenMn(III)]+ did not require the presence of dioxygen, and that base treatment of DNA subsequent to cleavage by [SalenMn(III)]+ afforded greater cleavage and alterations in the cleavage patterns. Analysis of DNA products formed upon DNA cleavage by [SalenMn(III)] indicated that cleavage was due to oxidation of the sugar-phosphate backbone of DNA. Several mechanisms consistent with the observed products and reaction requirements are discussed.

Chapter Five describes progress on some additional studies. In one study, the DNA binding/cleaving specificities of Distamycin-EDTA derivatives bearing pyrrole N-isopropyl substituents were found to be the same as those of derivatives bearing pyrrole N-methyl substituents. In a second study, the design of and synthetic progress towards a series of nucleopeptide activators of transcription are presented. Five synthetic plasmids designed to test for activation of in vitro run-off transcription by DNA triple helix-forming oligonucleotides or nucleopeptides are described.

Chapter Six contains the experimental documentation of the thesis work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a simple single-layer magnetic microtrap configuration which can trap an array of magnetically-trapped Bose-Einstein condensate. The configuration consists of two series of parallel wires perpendicular to each other and all of the crossing points are cut off for maintaining the uniformity of the current. We analyse the trapping potential, the position of trapping centres and the uniformity of the array of the traps. The trapping depth and trapping frequency with different parameters are also calculated. Lastly, the effect of the cut-off crossing points, dissipate power, chip production are introduced concisely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]Este trabajo de fin de grado trata sobre el diseño de un array de antenas en tecnología microstrip para ser utilizado en la banda de 5 GHz del estándar de tecnologías inalámbricas IEEE 802.11a. Se buscará aplicar la teoría de arrays para conseguir la mayor ganancia posible, pero al mismo tiempo tratando de obtener un gran ancho de banda para que la antena sea óptima dentro de la mayor parte posible de la banda especificada. El proyecto partirá de un único parche microstrip para posteriormente ir evolucionando el diseño hasta llegar a un array de 2x2 elementos. Al primer diseño se le irán añadiendo progresivamente todos los componentes necesarios (red de adaptación, desfasadores, mayor número de parches, etc.) para poder ir estudiando las simulaciones a la vez que el diseño progresa. Todos los diseños se realizarán con el software ADS (Advanced Design System) de la compañía Agilent Technologies. Finalmente se fabricará el array diseñado y se medirá para contrastarlo con las simulaciones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate a planar ion chip design with a two-dimensional array of linear ion traps for the scalable quantum information processor. The segmented electrodes reside in a single plane on a substrate and a grounded metal plate, a combination of appropriate rf and DC potentials are applied to them for stable ion confinement, and the trap axes are located above the surface at a distance controlled by the electrodes' lateral extent and the substrate's height as discussed. The potential distributions are calculated using static electric field qualitatively. This architecture is conceptually simple and many current microfabrication techniques are feasible for the basic structure. It may provide a promising route for scalable quantum computers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription factor p53 is the most commonly altered gene in human cancer. As a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress through DNA-mediated charge transport. Electron hole transport occurs with a shallow distance dependence over long distances through the π-stacked DNA bases, leading to the oxidation and dissociation of DNA-bound p53. The extent of p53 dissociation depends upon the redox potential of the response element DNA in direct contact with each p53 monomer. The DNA sequence dependence of p53 oxidative dissociation was examined by electrophoretic mobility shift assays using radiolabeled oligonucleotides containing both synthetic and human p53 response elements with an appended anthraquinone photooxidant. Greater p53 dissociation is observed from DNA sequences containing low redox potential purine regions, particularly guanine triplets, within the p53 response element. Using denaturing polyacrylamide gel electrophoresis of irradiated anthraquinone-modified DNA, the DNA damage sites, which correspond to locations of preferred electron hole localization, were determined. The resulting DNA damage preferentially localizes to guanine doublets and triplets within the response element. Oxidative DNA damage is inhibited in the presence of p53, however, only at DNA sites within the response element, and therefore in direct contact with p53. From these data, predictions about the sensitivity of human p53-binding sites to oxidative stress, as well as possible biological implications, have been made. On the basis of our data, the guanine pattern within the purine region of each p53-binding site determines the response of p53 to DNA-mediated oxidation, yielding for some sequences the oxidative dissociation of p53 from a distance and thereby providing another potential role for DNA charge transport chemistry within the cell.

To determine whether the change in p53 response element occupancy observed in vitro also correlates in cellulo, chromatin immunoprecipition (ChIP) and quantitative PCR (qPCR) were used to directly quantify p53 binding to certain response elements in HCT116N cells. The HCT116N cells containing a wild type p53 were treated with the photooxidant [Rh(phi)2bpy]3+, Nutlin-3 to upregulate p53, and subsequently irradiated to induce oxidative genomic stress. To covalently tether p53 interacting with DNA, the cells were fixed with disuccinimidyl glutarate and formaldehyde. The nuclei of the harvested cells were isolated, sonicated, and immunoprecipitated using magnetic beads conjugated with a monoclonal p53 antibody. The purified immounoprecipiated DNA was then quantified via qPCR and genomic sequencing. Overall, the ChIP results were significantly varied over ten experimental trials, but one trend is observed overall: greater variation of p53 occupancy is observed in response elements from which oxidative dissociation would be expected, while significantly less change in p53 occupancy occurs for response elements from which oxidative dissociation would not be anticipated.

The chemical oxidation of transcription factor p53 via DNA CT was also investigated with respect to the protein at the amino acid level. Transcription factor p53 plays a critical role in the cellular response to stress stimuli, which may be modulated through the redox modulation of conserved cysteine residues within the DNA-binding domain. Residues within p53 that enable oxidative dissociation are herein investigated. Of the 8 mutants studied by electrophoretic mobility shift assay (EMSA), only the C275S mutation significantly decreased the protein affinity (KD) for the Gadd45 response element. EMSA assays of p53 oxidative dissociation promoted by photoexcitation of anthraquinone-tethered Gadd45 oligonucleotides were used to determine the influence of p53 mutations on oxidative dissociation; mutation to C275S severely attenuates oxidative dissociation while C277S substantially attenuates dissociation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide labeled, while oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed using a QTRAP 6500 LC-MS/MS system, quantified with Skyline, and directly compared. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide labeled cysteines is observed in oxidized samples as compared to the respective controls. All of the observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds potentially among the C124, C135, C141, C182, C275, and C277. Based on these data it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA.