959 resultados para DIMENSIONAL MODEL
Resumo:
This paper presents a new form of the one-dimensional Reynolds equation for lubricants whose rheological behaviour follows a modified Carreau rheological model proposed by Bair. The results of the shear stress and flow rate obtained through a new Reynolds–Carreau equation are shown and compared with the results obtained by other researchers.
Resumo:
We experimentally demonstrate a sigmoidal variation of the composition profile across semiconductor heterointerfaces. The wide range of material systems (III-arsenides, III-antimonides, III-V quaternary compounds, III-nitrides) exhibiting such a profile suggests a universal behavior. We show that sigmoidal profiles emerge from a simple model of cooperative growth mediated by twodimensional island formation, wherein cooperative effects are described by a specific functional dependence of the sticking coefficient on the surface coverage. Experimental results confirm that, except in the very early stages, island growth prevails over nucleation as the mechanism governing the interface development and ultimately determines the sigmoidal shape of the chemical profile in these two-dimensional grown layers. In agreement with our experimental findings, the model also predicts a minimum value of the interfacial width, with the minimum attainable value depending on the chemical identity of the species.
Resumo:
The luminescence properties of InxAl1−xN/GaN heterostructures are investigated systematically as a function of the In content (x = 0.067 − 0.208). The recombination between electrons confined in the two-dimensional electron gas and free holes in the GaN template is identified and analyzed. We find a systematic shift of the recombination with increasing In content from about 80 meV to only few meV below the GaN exciton emission. These results are compared with model calculations and can be attributed to the changing band profile and originating from the polarization gradient between InAlN and GaN.
Resumo:
A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards or inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly.
Resumo:
Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.
Resumo:
Abstract?We consider a mathematical model related to the stationary regime of a plasma of fusion nuclear, magnetically confined in a Stellarator device. Using the geometric properties of the fusion device, a suitable system of coordinates and averaging methods, the mathematical problem may be reduced to a two dimensional free boundary problem of nonlocal type, where the corresponding differential equation is of the Grad?Shafranov type. The current balance within each flux magnetic gives us the possibility to define the third covariant magnetic field component with respect to the averaged poloidal flux function. We present here some numerical experiences and we give some numerical approach for the averaged poloidal flux and for the third covariant magnetic field component.
Resumo:
A reliability analysis method is proposed that starts with the identification of all variables involved. These are divided in three groups: (a) variables fixed by codes, as loads and strength project values, and their corresponding partial safety coefficients, (b) geometric variables defining the dimension of the main elements involved, (c) the cost variables, including the possible damages caused by failure, (d) the random variables as loads, strength, etc., and (e)the variables defining the statistical model, as the family of distribution and its corresponding parameters. Once the variables are known, the II-theorem is used to obtain a minimum equivalent set of non-dimensional variables, which is used to define the limit states. This allows a reduction in the number of variables involved and a better understanding of their coupling effects. Two minimum cost criteria are used for selecting the project dimensions. One is based on a bounded-probability of failure, and the other on a total cost, including the damages of the possible failure. Finally, the method is illustrated by means of an application.
Resumo:
The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model (equal damping of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase), no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic dynamics that is absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralelling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable.
Resumo:
The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. No matter how small the growth rate of the unstable wave, the four-dimensional flow for the three wave amplitudes and a relative phase, with both resistive damping and linear Landau damping, exhibits chaotic relaxation oscillations that are absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable. The parameter domain developing chaos is much broader than the corresponding domain in a reduced 3-wave model that assumes equal dampings of the daughter waves
Resumo:
Several groups all over the world are researching in several ways to render 3D sounds. One way to achieve this is to use Head Related Transfer Functions (HRTFs). These measurements contain the Frequency Response of the human head and torso for each angle. Some years ago, was only possible to measure these Frequency Responses only in the horizontal plane. Nowadays, several improvements have made possible to measure and use 3D data for this purpose. The problem was that the groups didn't have a standard format file to store the data. That was a problem when a third part wanted to use some different HRTFs for 3D audio rendering. Every of them have different ways to store the data. The Spatially Oriented Format for Acoustics or SOFA was created to provide a solution to this problem. It is a format definition to unify all the previous different ways of storing any kind of acoustics data. At the moment of this project they have defined some basis for the format and some recommendations to store HRTFs. It is actually under development, so several changes could come. The SOFA[1] file format uses a numeric container called netCDF[2], specifically the Enhaced data model described in netCDF 4 that is based on HDF5[3]. The SoundScape Renderer (SSR) is a tool for real-time spatial audio reproduction providing a variety of rendering algorithms. The SSR was developed at the Quality and Usability Lab at TU Berlin and is now further developed at the Institut für Nachrichtentechnik at Universität Rostock [4]. This project is intended to be an introduction to the use of SOFA files, providing a C++ API to manipulate them and adapt the binaural renderer of the SSR for working with the SOFA format. RESUMEN. El SSR (SoundScape Renderer) es un programa que está siendo desarrollado actualmente por la Universität Rostock, y previamente por la Technische Universität Berlin. El SSR es una herramienta diseñada para la reproducción y renderización de audio 2D en tiempo real. Para ello utiliza diversos algoritmos, algunos orientados a sistemas formados por arrays de altavoces en diferentes configuraciones y otros algoritmos diseñados para cascos. El principal objetivo de este proyecto es dotar al SSR de la capacidad de renderizar sonidos binaurales en 3D. Este proyecto está centrado en el binaural renderer del SSR. Este algoritmo se basa en el uso de HRTFs (Head Related Transfer Function). Las HRTFs representan la función de transferencia del sistema formado por la cabeza y el torso del oyente. Esta función es medida desde diferentes ángulos. Con estos datos el binaural renderer puede generar audio en tiempo real simulando la posición de diferentes fuentes. Para poder incluir una base de datos con HRTFs en 3D se ha hecho uso del nuevo formato SOFA (Spatially Oriented Format for Acoustics). Este nuevo formato se encuentra en una fase bastante temprana de su desarrollo. Está pensado para servir como formato estándar para almacenar HRTFs y cualquier otro tipo de medidas acústicas, ya que actualmente cada laboratorio cuenta con su propio formato de almacenamiento y esto hace bastante difícil usar varias bases de datos diferentes en un mismo proyecto. El formato SOFA hace uso del contenedor numérico netCDF, que a su vez esta basado en un contenedor más básico llamado HRTF-5. Para poder incluir el formato SOFA en el binaural renderer del SSR se ha desarrollado una API en C++ para poder crear y leer archivos SOFA con el fin de utilizar los datos contenidos en ellos dentro del SSR.
Resumo:
Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.
Resumo:
Virtual reality (VR) techniques to understand and obtain conclusions of data in an easy way are being used by the scientific community. However, these techniques are not used frequently for analyzing large amounts of data in life sciences, particularly in genomics, due to the high complexity of data (curse of dimensionality). Nevertheless, new approaches that allow to bring out the real important data characteristics, arise the possibility of constructing VR spaces to visually understand the intrinsic nature of data. It is well known the benefits of representing high dimensional data in tridimensional spaces by means of dimensionality reduction and transformation techniques, complemented with a strong component of interaction methods. Thus, a novel framework, designed for helping to visualize and interact with data about diseases, is presented. In this paper, the framework is applied to the Van't Veer breast cancer dataset is used, while oncologists from La Paz Hospital (Madrid) are interacting with the obtained results. That is to say a first attempt to generate a visually tangible model of breast cancer disease in order to support the experience of oncologists is presented.
Resumo:
Soil tomography and morphological functions built over Minkowski functionals were used to describe the impact on pore structure of two soil management practices in a Mediterranean vineyard. Soil structure controls important physical and biological processes in soil–plant–microbial systems. Those processes are dominated by the geometry of soil pore structure, and a correct model of this geometry is critical for understanding them. Soil tomography has been shown to provide rich three-dimensional digital information on soil pore geometry. Recently, mathematical morphological techniques have been proposed as powerful tools to analyze and quantify the geometrical features of porous media. Minkowski functionals and morphological functions built over Minkowski functionals provide computationally efficient means to measure four fundamental geometrical features of three-dimensional geometrical objects, that is, volume, boundary surface, mean boundary surface curvature, and connectivity. We used the threshold and the dilation and erosion of three-dimensional images to generate morphological functions and explore the evolution of Minkowski functionals as the threshold and as the degree of dilation and erosion changes. We analyzed the three-dimensional geometry of soil pore space with X-ray computed tomography (CT) of intact soil columns from a Spanish Mediterranean vineyard by using two different management practices (conventional tillage versus permanent cover crop of resident vegetation). Our results suggested that morphological functions built over Minkowski functionals provide promising tools to characterize soil macropore structure and that the evolution of morphological features with dilation and erosion is more informative as an indicator of structure than moving threshold for both soil managements studied.
Resumo:
Purpose: A fully three-dimensional (3D) massively parallelizable list-mode ordered-subsets expectation-maximization (LM-OSEM) reconstruction algorithm has been developed for high-resolution PET cameras. System response probabilities are calculated online from a set of parameters derived from Monte Carlo simulations. The shape of a system response for a given line of response (LOR) has been shown to be asymmetrical around the LOR. This work has been focused on the development of efficient region-search techniques to sample the system response probabilities, which are suitable for asymmetric kernel models, including elliptical Gaussian models that allow for high accuracy and high parallelization efficiency. The novel region-search scheme using variable kernel models is applied in the proposed PET reconstruction algorithm. Methods: A novel region-search technique has been used to sample the probability density function in correspondence with a small dynamic subset of the field of view that constitutes the region of response (ROR). The ROR is identified around the LOR by searching for any voxel within a dynamically calculated contour. The contour condition is currently defined as a fixed threshold over the posterior probability, and arbitrary kernel models can be applied using a numerical approach. The processing of the LORs is distributed in batches among the available computing devices, then, individual LORs are processed within different processing units. In this way, both multicore and multiple many-core processing units can be efficiently exploited. Tests have been conducted with probability models that take into account the noncolinearity, positron range, and crystal penetration effects, that produced tubes of response with varying elliptical sections whose axes were a function of the crystal's thickness and angle of incidence of the given LOR. The algorithm treats the probability model as a 3D scalar field defined within a reference system aligned with the ideal LOR. Results: This new technique provides superior image quality in terms of signal-to-noise ratio as compared with the histogram-mode method based on precomputed system matrices available for a commercial small animal scanner. Reconstruction times can be kept low with the use of multicore, many-core architectures, including multiple graphic processing units. Conclusions: A highly parallelizable LM reconstruction method has been proposed based on Monte Carlo simulations and new parallelization techniques aimed at improving the reconstruction speed and the image signal-to-noise of a given OSEM algorithm. The method has been validated using simulated and real phantoms. A special advantage of the new method is the possibility of defining dynamically the cut-off threshold over the calculated probabilities thus allowing for a direct control on the trade-off between speed and quality during the reconstruction.
Resumo:
The linear instability of the three-dimensional boundary-layer over the HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, at Mach 7, has been analyzed through spatial BiGlobal analysis, in a effort to understand transition and accurately predict local heat loads on next-generation ight vehicles. The results at an intermediate axial section of the cone, Re x = 8x10 5, show three different families of spatially amplied linear global modes, the attachment-line and cross- ow modes known from earlier analyses, and a new global mode, peaking in the vicinity of the minor axis of the cone, termed \center-line mode". We discover that a sequence of symmetric and anti-symmetric centerline modes exist and, for the basic ow at hand, are maximally amplied around F* = 130kHz. The wavenumbers and spatial distribution of amplitude functions of the centerline modes are documented