984 resultados para DIMENSIONAL CELLULAR-AUTOMATA
Resumo:
In the present investigation we studied the fusogenic process developed by influenza A, B and C viruses on cell surfaces and different factors associated with virus and cell membrane structures. The biological activity of purified virus strains was evaluated in hemagglutination, sialidase and fusion assays. Hemolysis by influenza A, B and C viruses ranging from 77.4 to 97.2%, from 20.0 to 65.0%, from 0.2 to 93.7% and from 9.0 to 76.1% was observed when human, chicken, rabbit and monkey erythrocytes, respectively, were tested at pH 5.5. At this pH, low hemolysis indexes for influenza A, B and C viruses were observed if horse erythrocytes were used as target cells for the fusion process, which could be explained by an inefficient receptor binding activity of influenza on N-glycolyl sialic acids. Differences in hemagglutinin receptor binding activity due to its specificity to N-acetyl or N-glycolyl cell surface oligosaccharides, density of these cellular receptors and level of negative charges on the cell surface may possibly explain these results, showing influence on the sialidase activity and the fusogenic process. Comparative analysis showed a lack of dependence between the sialidase and fusion activities developed by influenza B viruses. Influenza A viruses at low sialidase titers (<2) also exhibited clearly low hemolysis at pH 5.5 (15.8%), while influenza B viruses with similarly low sialidase titers showed highly variable hemolysis indexes (0.2 to 78.0%). These results support the idea that different virus and cell-associated factors such as those presented above have a significant effect on the multifactorial fusion process
Resumo:
The thymus contains an extensive extracellular matrix. Although thymocytes express integrins capable of binding to matrix molecules, the functional significance of the matrix for T cell development is uncertain. We have shown that the matrix is associated with thymic fibroblasts which are required for the CD44+ CD25+ stage of double negative (CD4-8-) thymocyte development. The survival of cells at this stage is dependent on IL-7 and we propose that the role of fibroblasts is to present, via the matrix, IL-7 to developing T cells.
Resumo:
Prions are an unconventional form of infectious agents composed only of protein and involved in transmissible spongiform encephalopathies in humans and animals. The infectious particle is composed by PrPsc which is an isoform of a normal cellular glycosyl-phosphatidylinositol (GPI) anchored protein, PrPc, of unknown function. The two proteins differ only in conformation, PrPc is composed of 40% a helix while PrPsc has 60% ß-sheet and 20% a helix structure. The infection mechanism is trigged by interaction of PrPsc with cellular prion protein causing conversion of the latter's conformation. Therefore, the infection spreads because new PrPsc molecules are generated exponentially from the normal PrPc. The accumulation of insoluble PrPsc is probably one of the events that lead to neuronal death. Conflicting data in the literature showed that PrPc internalization is mediated either by clathrin-coated pits or by caveolae-like membranous domains. However, both pathways seem to require a third protein (a receptor or a prion-binding protein) either to make the connection between the GPI-anchored molecule to clathrin or to convert PrPc into PrPsc. We have recently characterized a 66-kDa membrane receptor which binds PrPc in vitro and in vivo and mediates the neurotoxicity of a human prion peptide. Therefore, the receptor should have a role in the pathogenesis of prion-related diseases and in the normal cellular process. Further work is necessary to clarify the events triggered by the association of PrPc/PrPsc with the receptor.
Resumo:
During the past two decades, nitric oxide signaling has been one of the most rapidly growing areas in biology. This simple free radical gas can regulate an ever growing list of biological processes. In most instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis. However, the identification of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. The effects of nitric oxide can mediate important physiological regulatory events in cell regulation, cell-cell communication and signaling. Nitric oxide can function as an intracellular messenger, neurotransmitter and hormone. However, as with any messenger molecule, there can be too much or too little of the substance and pathological events ensue. Methods to regulate either nitric oxide formation, metabolism or function have been used therapeutically for more than a century as with nitroglycerin therapy. Current and future research should permit the development of an expanded therapeutic armamentarium for the physician to manage effectively a number of important disorders. These expectations have undoubtedly fueled the vast research interests in this simple molecule.
Resumo:
Prions have been extensively studied since they represent a new class of infectious agents in which a protein, PrPsc (prion scrapie), appears to be the sole component of the infectious particle. They are responsible for transmissible spongiform encephalopathies, which affect both humans and animals. The mechanism of disease propagation is well understood and involves the interaction of PrPsc with its cellular isoform (PrPc) and subsequently abnormal structural conversion of the latter. PrPc is a glycoprotein anchored on the cell surface by a glycosylphosphatidylinositol moiety and expressed in most cell types but mainly in neurons. Prion diseases have been associated with the accumulation of the abnormally folded protein and its neurotoxic effects; however, it is not known if PrPc loss of function is an important component. New efforts are addressing this question and trying to characterize the physiological function of PrPc. At least four different mouse strains in which the PrP gene was ablated were generated and the results regarding their phenotype are controversial. Localization of PrPc on the cell membrane makes it a potential candidate for a ligand uptake, cell adhesion and recognition molecule or a membrane signaling molecule. Recent data have shown a potential role for PrPc in the metabolism of copper and moreover that this metal stimulates PrPc endocytosis. Our group has recently demonstrated that PrPc is a high affinity laminin ligand and that this interaction mediates neuronal cell adhesion and neurite extension and maintenance. Moreover, PrPc-caveolin-1 dependent coupling seems to trigger the tyrosine kinase Fyn activation. These data provide the first evidence for PrPc involvement in signal transduction.
Resumo:
Important advances have been made in understanding the genetic processes that control skeletal muscle formation. Studies conducted on quails detected a delay in the myogenic program of animals selected for high growth rates. These studies have led to the hypothesis that a delay in myogenesis would allow somitic cells to proliferate longer and consequently increase the number of embryonic myoblasts. To test this hypothesis, recently segmented somites and part of the unsegmented paraxial mesoderm were separated from the neural tube/notochord complex in HH12 chicken embryos. In situ hybridization and competitive RT-PCR revealed that MyoD transcripts, which are responsible for myoblast determination, were absent in somites separated from neural tube/notochord (1.06 and 0.06 10-3 attomol MyoD/1 attomol ß-actin for control and separated somites, respectively; P<0.01). However, reapproximation of these structures allowed MyoD to be expressed in somites. Cellular proliferation was analyzed by immunohistochemical detection of incorporated BrdU, a thymidine analogue. A smaller but not significant (P = 0.27) number of proliferating cells was observed in somites that had been separated from neural tube/notochord (27 and 18 for control and separated somites, respectively). These results confirm the influence of the axial structures on MyoD activation but do not support the hypothesis that in the absence of MyoD transcripts the cellular proliferation would be maintained for a longer period of time.
Resumo:
Patients with gastric cancer have a variety of immunological abnormalities. In the present study the lymphocytes and their subsets were determined in the peripheral blood of patients with gastric cancer (N = 41) both before and after surgical treatment. The percent of helper/inducer CD4 T cells (43.6 ± 8.9) was not different after tumor resection (43.6 ± 8.2). The percent of the cytotoxic CD8+ T cell population decreased significantly, whether patients were treated surgically (27.2 ± 5.8%, N = 20) or not (27.3 ± 7.3%, N = 20) compared to individuals with inflammatory disease (30.9 ± 7.5%) or to healthy individuals (33.2 ± 7.6%). The CD4/CD8 ratio consequently increased in the group of cancer patients. The peripheral blood lymphocytes of gastric cancer patients showed reduced responsiveness to mitogens. The defective blastogenic response of the lymphocytes was not associated with the production of transforming growth factor beta (TGF-ß) since the patients with cancer had reduced production of TGF-ß1 (269 ± 239 pg/ml, N = 20) in comparison to the normal individuals (884 ± 175 pg/ml, N = 20). These results indicate that the immune response of gastric cancer patients was not significantly modified by surgical treatment when evaluated four weeks after surgery and that the immunosuppression observed was not due to an increase in TGF-ß1 production by peripheral leukocytes.
Resumo:
Integrins play crucial roles in cell adhesion, migration, and signaling by providing transmembrane links between the extracellular matrix and the cytoskeleton. Integrins cluster in macromolecular complexes to generate cell-matrix adhesions such as focal adhesions. In this mini-review, we compare certain integrin-based biological responses and signaling during cell interactions with standard 2D cell culture versus 3D matrices. Besides responding to the composition of the matrix, cells sense and react to physical properties that include three-dimensionality and rigidity. In routine cell culture, fibroblasts and mesenchymal cells appear to use focal adhesions as anchors. They then use intracellular actomyosin contractility and dynamic, directional integrin movements to stretch cell-surface fibronectin and to generate characteristic long fibrils of fibronectin in "fibrillar adhesions". Some cells in culture proceed to produce dense, three-dimensional matrices similar to in vivo matrix, as opposed to the flat, rigid, two-dimensional surfaces habitually used for cell culture. Cells within such more natural 3D matrices form a distinctive class of adhesion termed "3D-matrix adhesions". These 3D adhesions show distinctive morphology and molecular composition. Their formation is heavily dependent on interactions between integrin alpha5ß1 and fibronectin. Cells adhere much more rapidly to 3D matrices. They also show more rapid morphological changes, migration, and proliferation compared to most 2D matrices or 3D collagen gels. Particularly notable are low levels of tyrosine phosphorylation of focal adhesion kinase and moderate increases in activated mitogen-activated protein kinase. These findings underscore the importance of the dimensionality and dynamics of matrix substrates in cellular responses to the extracellular matrix.
Resumo:
Cell migration is a crucial event in the general process of thymocyte differentiation. The cellular interactions involved in the control of this migration are beginning to be defined. At least chemokines and extracellular matrix proteins appear to be part of the game. Cells of the thymic microenvironment produce these two groups of molecules, whereas developing thymocytes express the corresponding receptors. Moreover, although chemokines and extracellular matrix can drive thymocyte migration per se, a combined role for these molecules appears to contribute to the resulting migration patterns of thymocytes in their various stages of differentiation. The dynamics of chemokine and extracellular matrix production and degradation is not yet well understood. However, matrix metalloproteinases are likely to play a role in the breakdown of intrathymic extracellular matrix contents. Thus, the physiological migration of thymocytes should be envisioned as a resulting vector of multiple, simultaneous and/or sequential stimuli involving chemokines, adhesive and de-adhesive extracellular matrix proteins, as well as matrix metalloproteinases. Accordingly, it is conceivable that any pathological change in any of these loops may result in the alteration of normal thymocyte migration. This seems to be the case in murine infection by the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas' disease. A better knowledge of the physiological mechanisms governing thymocyte migration will provide new clues for designing therapeutic strategies targeting developing T cells.
Resumo:
The current myogenesis and myofibrillogenesis model has been based mostly on in vitro cell culture studies, and, to a lesser extent, on in situ studies in avian and mammalian embryos. While the more isolated artificial conditions of cells in culture permitted careful structural analysis, the actual in situ cellular structures have not been described in detail because the embryos are more difficult to section and manipulate. To overcome these difficulties, we used the optically clear and easy to handle embryos of the zebrafish Danio rerio. We monitored the expression of cytoskeletal and cell-adhesion proteins (actin, myosin, desmin, alpha-actinin, troponin, titin, vimentin and vinculin) using immunofluorescence microscopy and video-enhanced, background-subtracted, differential interference contrast of 24- to 48-h zebrafish embryos. In the mature myotome, the mononucleated myoblasts displayed periodic striations for all sarcomeric proteins tested. The changes in desmin distribution from aggregates to perinuclear and striated forms, although following the same sequence, occurred much faster than in other models. All desmin-positive cells were also positive for myofibrillar proteins and striated, in contrast to that which occurs in cell cultures. Vimentin appeared to be striated in mature cells, while it is developmentally down-regulated in vitro. The whole connective tissue septum between the somites was positive for adhesion proteins such as vinculin, instead of the isolated adhesion plaques observed in cell cultures. The differences in the myogenesis of zebrafish in situ and in cell culture in vitro suggest that some of the previously observed structures and protein distributions in cultures could be methodological artifacts.
Resumo:
The prone position can be used for the planning of adjuvant radiotherapy after conservative breast surgery in order to deliver less irradiation to lung and cardiac tissue. In the present study, we compared the results of three-dimensional conformal radiotherapy planning for five patients irradiated in the supine and prone position. Tumor stage was T1N0M0 in four patients and T1N1M0 in one. All patients had been previously submitted to conservative breast surgery. Breast size was large in three patients and moderate in the other two. Irradiation in the prone position was performed using an immobilization foam pad with a hole cut into it to accommodate the breast so that it would hang down away from the chest wall. Dose-volume histograms showed that mean irradiation doses reaching the ipsilateral lung were 8.3 ± 3.6 Gy with the patient in the supine position and 1.4 ± 1.0 Gy with the patient in the prone position (P = 0.043). The values for the contralateral lung were 1.3 ± 0.7 and 0.3 ± 0.1 Gy (P = 0.043) and the values for cardiac tissue were 4.6 ± 1.6 and 3.0 ± 1.7 Gy (P = 0.079), respectively. Thus, the dose-volume histograms demonstrated that lung tissue irradiation was significantly lower with the patient in the prone position than in the supine position. Large-breasted women appeared to benefit most from irradiation in the prone position. Prone position breast irradiation appears to be a simple and effective alternative to the conventional supine position for patients with large breasts, since they are subjected to lower pulmonary doses which may cause less pulmonary side effects in the future.
Resumo:
Purification and characterization of individual antigenic proteins are essential for the understanding of the pathogenic mechanisms of mycobacteria and the immune response against them. In the present study, we used anion-exchange chromatography to fractionate cell extracts and culture supernatant proteins from Mycobacterium bovis to identify T-cell-stimulating antigens. These fractions were incubated with peripheral blood mononuclear cells (PBMC) from M. bovis-infected cattle in lymphoproliferation assays. This procedure does not denature proteins and permits the testing of mixtures of potential antigens that could be later identified. We characterized protein fractions with high stimulation indices from both culture supernatants and cell extracts. Proteins were identified by two-dimensional gel electrophoresis followed by N-terminal sequencing or MALDI-TOF. Culture supernatant fractions containing low molecular weight proteins such as ESAT6 and CFP10 and other proteins (85B, MPB70), and the novel antigens TPX and TRB-B were associated with a high stimulation index. These results reinforce the concept that some low molecular weight proteins such as ESAT6 and CFP10 play an important role in immune responses. Also, Rv3747 and L7/L12 were identified in high stimulation index cell extract fractions. These data show that protein fractions with high lymphoproliferative activity for bovine PBMC can be characterized and antigens which have been already described and new protein antigens can also be identified in these fractions.
Resumo:
Visceral afferents send information via cranial nerves to the nucleus tractus solitarius (NTS). The NTS is the initial step of information processing that culminates in homeostatic reflex responses. Recent evidence suggests that strong afferent synaptic responses in the NTS are most often modulated by depression and this forms a basic principle of central integration of these autonomic pathways. The visceral afferent synapse is uncommonly powerful at the NTS with large unitary response amplitudes and depression rather than facilitation at moderate to high frequencies of activation. Substantial signal depression occurs through multiple mechanisms at this very first brainstem synapse onto second order NTS neurons. This review highlights new approaches to the study of these basic processes featuring patch clamp recordings in NTS brain slices and optical techniques with fluorescent tracers. The vanilloid receptor agonist, capsaicin, distinguishes two classes of second order neurons (capsaicin sensitive or capsaicin resistant) that appear to reflect unmyelinated and myelinated afferent pathways. The differences in cellular properties of these two classes of NTS neurons indicate clear functional differentiation at both the pre- and postsynaptic portions of these first synapses. By virtue of their position at the earliest stage of these pathways, such mechanistic differences probably impart important differentiation in the performance over the entire reflex pathways.
Resumo:
Asthma is an inflammatory condition characterized by the involvement of several mediators, including reactive oxygen species. The aim of the present study was to investigate the superoxide release and cellular glutathione peroxidase (cGPx) activity in peripheral blood granulocytes and monocytes from children and adolescents with atopic asthma. Forty-four patients were selected and classified as having intermittent or persistent asthma (mild, moderate or severe). The spontaneous or phorbol myristate acetate (PMA, 30 nM)-induced superoxide release by granulocytes and monocytes was determined at 0, 5, 15, and 25 min. cGPx activity was assayed spectrophotometrically. The spontaneous superoxide release by granulocytes from patients with mild (N = 15), moderate (N = 12) or severe (N = 6) asthma was higher at 25 min compared to healthy individuals (N = 28, P < 0.05, Duncan test). The PMA-induced superoxide release by granulocytes from patients with moderate (N = 12) or severe (N = 6) asthma was higher at 15 and 25 min compared to healthy individuals (N = 28, P < 0.05 in both times of incubation, Duncan test). The spontaneous or PMA-induced superoxide release by monocytes from asthmatic patients was similar to healthy individuals (P > 0.05 in all times of incubation, Duncan test). cGPx activity of granulocytes and monocytes from patients with persistent asthma (N = 20) was also similar to healthy individuals (N = 10, P > 0.05, Kruskal-Wallis test). We conclude that, under specific circumstances, granulocytes from children with persistent asthma present a higher respiratory burst activity compared to healthy individuals. These findings indicate a risk of oxidative stress, phagocyte auto-oxidation, and the subsequent release of intracellular toxic oxidants and enzymes, leading to additional inflammation and lung damage in asthmatic children.
Resumo:
DNA double-strand breaks (DSBs) represent a major threat to the genomic stability of eukaryotic cells. DNA repair mechanisms such as non-homologous end joining (NHEJ) are responsible for the maintenance of eukaryotic genomes. Dysfunction of one or more of the many protein complexes that function in NHEJ can lead to sensitivity to DNA damaging agents, apoptosis, genomic instability, and severe combined immunodeficiency. One protein, Pso2p, was shown to participate in the repair of DSBs induced by DNA inter-strand cross-linking (ICL) agents such as cisplatin, nitrogen mustard or photo-activated bi-functional psoralens. The molecular function of Pso2p in DNA repair is unknown, but yeast and mammalian cell line mutants for PSO2 show the same cellular responses as strains with defects in NHEJ, e.g., sensitivity to ICLs and apoptosis. The Pso2p human homologue Artemis participates in V(D)J recombination. Mutations in Artemis induce a variety of immunological deficiencies, a predisposition to lymphomas, and an increase in chromosomal aberrations. In order to better understand the role of Pso2p in the repair of DSBs generated as repair intermediates of ICLs, an in silico approach was used to characterize the catalytic domain of Pso2p, which led to identification of novel Pso2p homologues in other organisms. Moreover, we found the catalytic core of Pso2p fused to different domains. In plants, a specific ATP-dependent DNA ligase I contains the catalytic core of Pso2p, constituting a new DNA ligase family, which was named LIG6. The possible functions of Pso2p/Artemis/Lig6p in NHEJ and V(D)J recombination and in other cellular metabolic reactions are discussed.