998 resultados para DEVELOPING HIPPOCAMPAL-NEURONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HeCo mouse model is characterized by a subcortical heterotopia formed by misplaced neurons normally migrating into the superficial cortical layers. The mutant mouse has a tendency to epileptic seizures. In my thesis project we discovered the mutated Eml1 gene, a member of the echinoderm microtubule-associated protein (EMAP) family, in HeCo as well as in a family of three children showing complex malformation of cortical development. This discovery formed an important step in exploring the pathogenic mechanisms underlying the HeCo phenotype. In vitro results showed that during cell division the EML1 protein is associated with the midbody and a mutated version of Eml1 highlighted an important role of the protein in the astral MT array during cell cycle. In vivo, we found that already at an early age of cortical development (E13), ectopic progenitors such as RGs (PAX6) and IPCs (TBR2) accumulate in the IZ along the entire neocortex. We demonstrated that in the VZ of the HeCo mouse, spindle orientation and cell cycle exit are perturbed. In later stages (E17), RG fibers are strongly disorganized with deep layer (TBR1) and upper layer (CUX1) neurons trapped within an ectopic mass. At P3, columns of upper layer neurons were present between the heterotopia and the developing cortex; these columns were also present at P7 but at lesser extent. Time lapse video recording (E15.5) revealed that the parameters characterizing the migration of individual neurons are not disturbed in HeCo; however, this analysis showed that the density of migrating neuron was smaller in HeCo. In conclusion, truncated EML1 is likely to play a prominent role during cell cycle but also acts on the cytoskeletal architecture altering the shape of RG fibers thus influencing the pattern of neuronal migration. The signal transduction between external cues and intracellular effector pathways through MTs may be secondary but sustains the heterotopia development and further studies are needed to clarify the impact of EML1 in progenitors versus post-mitotic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from the early descriptions of Kraepelin and Bleuler, the construct of schizotypy was developed from observations of aberrations in nonpsychotic family members of schizophrenia patients. In contemporary diagnostic manuals, the positive symptoms of schizotypal personality disorder were included in the ultra high-risk (UHR) criteria 20 years ago, and nowadays are broadly employed in clinical early detection of psychosis. The schizotypy construct, now dissociated from strict familial risk, also informed research on the liability to develop any psychotic disorder, and in particular schizophrenia-spectrum disorders, even outside clinical settings. Against the historical background of schizotypy it is surprising that evidence from longitudinal studies linking schizotypy, UHR, and conversion to psychosis has only recently emerged; and it still remains unclear how schizotypy may be positioned in high-risk research. Following a comprehensive literature search, we review 18 prospective studies on 15 samples examining the evidence for a link between trait schizotypy and conversion to psychosis in 4 different types of samples: general population, clinical risk samples according to UHR and/or basic symptom criteria, genetic (familial) risk, and clinical samples at-risk for a nonpsychotic schizophrenia-spectrum diagnosis. These prospective studies underline the value of schizotypy in high-risk research, but also point to the lack of evidence needed to better define the position of the construct of schizotypy within a developmental psychopathology perspective of emerging psychosis and schizophrenia-spectrum disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

THE COMBINATION OF ADVANCED NEUROIMAGING TECHNIQUES AND MAJOR DEVELOPMENTS IN COMPLEX NETWORK SCIENCE, HAVE GIVEN BIRTH TO A NEW FRAMEWORK FOR STUDYING THE BRAIN: "connectomics." This framework provides the ability to describe and study the brain as a dynamic network and to explore how the coordination and integration of information processing may occur. In recent years this framework has been used to investigate the developing brain and has shed light on many dynamic changes occurring from infancy through adulthood. The aim of this article is to review this work and to discuss what we have learned from it. We will also use this body of work to highlight key technical aspects that are necessary in general for successful connectome analysis using today's advanced neuroimaging techniques. We look to identify current limitations of such approaches, what can be improved, and how these points generalize to other topics in connectome research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquest treball avarca des de reunions amb personal de qualitat d’una fàbrica decremalleres fins a la proposta d’un prototip d’una màquina que solucionés els seusproblemes concrets de producció. Pel camí s’ha fet recerca envers de solucionsprèvies que fossin factibles a realitzar en uns pocs mesos i amb els medis limitatsdels que es desponiaLes solucions, tant de mètodes d’assaig i observació com de disseny són un reflexclar de procés d’enginyeria en l’àmbit industrial espanyol. Els medis escassegen,però amb temps (tampoc gaire) i enginy es troben formes de satisfer lesnecessitats. Al cap i a la fi és el que s’espera de nosaltres com a enginyers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the cerebrospinal fluid of 26 drug-naive schizophrenics (DSM-III- R), we observed that the level of glutathione ([GSH]) and of its metabolite γ-Glu-Gln was decreased by 27% and 16% respectively. Using a new in-vivo method based on magnetic resonance spec- troscopy, [GSH] was measured in the medial prefrontal cortex of 18 schizophrenics and found to be 52 % lower than in controls (n = 20). This is consistent with the recently observed decreased mRNA levels in fibroblasts of patients (n=32) of the two GSH synthesizing en- zymes (glutathione synthetase (GSS), and glutamate-cysteine ligase M (GCLM) the modulatory subunit of glutamate-cysteine ligase). Moreover, the level of GCLM expression in fibroblasts correlates neg- atively with the psychopathology (positive, general and some nega- tive symptoms). Thus, the observed difference in gene expression is not only the cause of low brain [GSH], but is also related to the sever- ity of symptoms, suggesting that fibroblasts are adequate surrogate for brain tissue. A hypothesis was proposed, based on a central role of GSH in the pathophysiology of schizophrenia. GSH is an important endogenous redox regulator and neuroactive substance. GSH is pro- tecting cells from damage by reactive oxygen species generated, among others, by the metabolism of dopamine. A GSH deficit-in- duced oxidative stress would lead to lipid peroxidation and micro-le- sions in the surrounding of catecholamine terminals, affecting the synaptic contacts on dendritic spines of cortical neurones, where ex- citatory glutamatergic terminals converge with dopaminergic ones. This would lead to spines degeneration and abnormal nervous con- nections or structural disconnectivity, possibly responsible for posi- tive, perceptive and cognitive symptoms of schizophrenia. In addi- tion, a GSH deficit could also lead to a functional disconnectivity by depressing NMDA neurotransmission, in analogy to phencyclidine effects. Present experimental biochemical, cell biological and behav- ioral data are consistent with the proposed mechanism: decreasing pharmacologically [GSH] in experimental models, with or without blocking DA uptake (GBR12909), induces morphological and behav- ioral changes similar to those observed in patients. Dendritic spines: (a) In neuronal cultures, low [GSH] and DA induce decreased density of neural processes; (b) In developing rats (p5-p16), [GSH] deficit and GBR induce a decrease in normal spines in prefrontal pyramids and in GABA-parvalbumine but not of -calretinine immunoreactivity in anterior cingulate. NMDA-dependant synaptic plasticity: GSH deple- I/13 tion in hippocampal slices impairs long-term potentiation. Develop- ing rats with low [GSH] and GBR have deficit in olfactory integration and in object recognition which appears earlier in males than fe- males, in analogy to the delay of the psychosis onset between man and woman. In summary, a deficit of GSH and/or GSH-related enzymes during early development could constitute a major vulnerability fac- tor in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether adenosine, a crucial regulator of the developing cardiovascular system, can provoke arrhythmias in the embryonic/fetal heart remains controversial. Here, we aimed to establish a mechanistic basis of how an adenosinergic stimulation alters function of the developing heart. Spontaneously beating hearts or dissected atria and ventricle obtained from 4-day-old chick embryos were exposed to adenosine or specific agonists of the receptors A(1)AR (CCPA), A(2A)AR (CGS-21680) and A(3)AR (IB-MECA). Expression of the receptors was determined by quantitative PCR. The functional consequences of blockade of NADPH oxidase, extracellular signal-regulated kinase (ERK), phospholipase C (PLC), protein kinase C (PKC) and L-type calcium channel (LCC) in combination with adenosine or CCPA, were investigated in vitro by electrocardiography. Furthermore, the time-course of ERK phosphorylation was determined by western blotting. Expression of A(1)AR, A(2A)AR and A(2B)AR was higher in atria than in ventricle while A(3)AR was equally expressed. Adenosine (100μM) triggered transient atrial ectopy and second degree atrio-ventricular blocks (AVB) whereas CCPA induced mainly Mobitz type I AVB. Atrial rhythm and atrio-ventricular propagation fully recovered after 60min. These arrhythmias were prevented by the specific A(1)AR antagonist DPCPX. Adenosine and CCPA transiently increased ERK phosphorylation and induced arrhythmias in isolated atria but not in ventricle. By contrast, A(2A)AR and A(3)AR agonists had no effect. Interestingly, the proarrhythmic effect of A(1)AR stimulation was markedly reduced by inhibition of NADPH oxidase, ERK, PLC, PKC or LCC. Moreover, NADPH oxidase inhibition or antioxidant MPG prevented both A(1)AR-mediated arrhythmias and ERK phosphorylation. These results suggest that pacemaking and conduction disturbances are induced via A(1)AR through concomitant stimulation of NADPH oxidase and PLC, followed by downstream activation of ERK and PKC with LCC as possible target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Islet-Brain 1, also known as JNK-interacting protein-1 (IB1/JIP-1) is a scaffold protein mainly involved in the regulation of the pro-apoptotic signalling cascade mediated by c-Jun-N-terminal kinase (JNK). IB1/JIP-1 organizes JNK and upstream kinases in a complex that facilitates JNK activation. However, overexpression of IB1/JIP-1 in neurons in vitro has been reported to result in inhibition of JNK activation and protection against cellular stress and apoptosis. The occurrence and the functional significance of stress-induced modulations of IB1/JIP-1 levels in vivo are not known. We investigated the regulation of IB1/JIP-1 in mouse hippocampus after systemic administration of kainic acid (KA), in wild-type mice as well as in mice hemizygous for the gene MAPK8IP1, encoding for IB1/JIP-1. We show here that IB1/JIP-1 is upregulated transiently in the hippocampus of normal mice, reaching a peak 8 h after seizure induction. Heterozygous mutant mice underexpressing IB1/JIP-1 showed a higher vulnerability to the epileptogenic properties of KA, whereas hippocampal IB1/JIP-1 levels remained unchanged after seizure induction. Subsequently, an increasing activation of JNK in the 8 h following seizure induction was observed in IB1/JIP-1 haploinsufficient mice, which also underwent more severe excitotoxic lesions in hippocampal CA3, as assessed histologically 3 days after KA administration. Taken together, these data indicate that IB1/JIP-1 in hippocampus participates in the regulation of the neuronal response to excitotoxic stress in a level-dependent fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The action of the thyroid hormones on responsive cells in the peripheral nervous system requires the presence of nuclear triiodothyronine receptors (NT3R). These nuclear receptors, including both the alpha and beta subtypes of NT3R, were visualized by immunocytochemistry with the specific 2B3 monoclonal antibody. In the dorsal root ganglia (DRG) of rat embryos, NT3R immunoreactivity was first discretely revealed in a few neurons at embryonic day 14 (E14), then strongly expressed by all neurons at E17 and during the first postnatal week; all DRG neurons continued to possess clear NT3R immunostaining, which faded slightly with age. The peripheral glial cells in the DRG displayed a short-lived NT3R immunoreaction, starting at E17 and disappearing from the satellite and Schwann cells by postnatal days 3 and 7 respectively. In the developing sciatic nerve, Schwann cells also exhibited transient NT3R immunoreactivity restricted to a short period ranging from E17 to postnatal day 10; the NT3R immunostaining of the Schwann cells vanished proximodistally along the sciatic nerve, so that the Schwann cells rapidly became free of detectable NT3R immunostaining. However, after the transection or crushing of an adult sciatic nerve, the NT3R immunoreactivity reappeared in the Schwann cells adjacent to the lesion by 2 days, then along the distal segment in which the axons were degenerating, and finally disappeared by 45 days, when the regenerating axons were allowed to re-occupy the distal segment.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct a rich dataset covering 47 developing countries over the years 1990-2007, combining several micro and macro level data sources to explore the link between political factors and body mass index (BMI). We implement a heteroskedastic generalized ordered logit model allowing for different covariate effects across the BMI distribution and accounting for the unequal BMI dispersion by geographical area. We find that systems with democratic qualities are more likely to reduce under-weight, but increase overweight/obesity, whereas effective political competition does entail double-benefits in the form of reducing both under-weight and obesity. Our results are robust to the introduction of country fixed effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa economy is undergoing great change. Among the sectors deemed important to Iowa’s economic future is bioscience. Definition of what constitutes the bioscience sector but suggests it includes agricultural, medical, plant-life sciences, and related industrial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hippocampal formation is essential for normal memory function and is implicated in many neurodevelopmental, neurodegenerative and neuropsychiatric disorders. In particular, abnormalities in hippocampal structure and function have been identified in schizophrenic subjects. Schizophrenia has a strong polygenic component, but the role of numerous susceptibility genes in normal brain development and function has yet to be investigated. Here we described the expression of schizophrenia susceptibility genes in distinct regions of the monkey hippocampal formation during early postnatal development. We found that, as compared with other genes, schizophrenia susceptibility genes exhibit a differential regulation of expression in the dentate gyrus, CA3 and CA1, over the course of postnatal development. A number of these genes involved in synaptic transmission and dendritic morphology exhibit a developmental decrease of expression in CA3. Abnormal CA3 synaptic organization observed in schizophrenics might be related to some specific symptoms, such as loosening of association. Interestingly, changes in gene expression in CA3 might occur at a time possibly corresponding to the late appearance of the first clinical symptoms. We also found earlier changes in expression of schizophrenia susceptibility genes in CA1, which might be linked to prodromal psychotic symptoms. A number of schizophrenia susceptibility genes including APOE, BDNF, MTHFR and SLC6A4 are involved in other disorders, and thus likely contribute to nonspecific changes in hippocampal structure and function that must be combined with the dysregulation of other genes in order to lead to schizophrenia pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Fibroblast growth factor (FGF) 8 is important for GnRH neuronal development with human mutations resulting in Kallmann syndrome. Murine data suggest a role for Fgf8 in hypothalamo-pituitary development; however, its role in the etiology of wider hypothalamo-pituitary dysfunction in humans is unknown.Objective: The objective of this study was to screen for FGF8 mutations in patients with septo-optic dysplasia (n = 374) or holoprosencephaly (HPE)/midline clefts (n = 47).Methods: FGF8 was analyzed by PCR and direct sequencing. Ethnically matched controls were then screened for mutated alleles (n = 480-686). Localization of Fgf8/FGF8 expression was analyzed by in situ hybridization in developing murine and human embryos. Finally, Fgf8 hypomorphic mice (Fgf8(loxPNeo/-)) were analyzed for the presence of forebrain and hypothalamo-pituitary defects.Results: A homozygous p.R189H mutation was identified in a female patient of consanguineous parentage with semilobar HPE, diabetes insipidus, and TSH and ACTH insufficiency. Second, a heterozygous p.Q216E mutation was identified in a female patient with an absent corpus callosum, hypoplastic optic nerves, and Moebius syndrome. FGF8 was expressed in the ventral diencephalon and anterior commissural plate but not in Rathke's pouch, strongly suggesting early onset hypothalamic and corpus callosal defects in these patients. This was consolidated by significantly reduced vasopressin and oxytocin staining neurons in the hypothalamus of Fgf8 hypomorphic mice compared with controls along with variable hypothalamo-pituitary defects and HPE.Conclusion: We implicate FGF8 in the etiology of recessive HPE and potentially septo-optic dysplasia/Moebius syndrome for the first time to our knowledge. Furthermore, FGF8 is important for the development of the ventral diencephalon, hypothalamus, and pituitary. (J Clin Endocrinol Metab 96: E1709-E1718, 2011)